Accessory

Accessory

Programming Guide

Version 2.5.3

Copyright © Samsung Electronics, Co., Ltd. All rights reserved.

Accessory Programming Guide

Table of Contents

COPYRIGHT ..ccceueiiiiiiiiiiiiiiieniiiiiieteeiienasiieiieteetrasassseieettetsasssssseiesseetsssssssssesseeranssssssssssseesessssssssssseeessnsssssssssenesnnnnsssssnns 4
L. OVERVIEW ...ccuuiiiiiiiiiiiieiiiiiiiniieininnsiiiiiettteisnssssssiiesstetessssssssiesseeeesssssssssssstesssssssssssssseesssssssssssssssaesassssssssssseassnnnnss 5
0t = 7N 08 11U 6
O o N 1 6
1.3 ARCHITECTURE ... ettt e b e s b e s b e s e aa e s b e s s ba e s sab e e bae s 7
2. DEVELOPMENT ENVIRONMENT......ciiitiiitiuiiiiiitiiiieeieiinieeissiseseeiisssessssaasesissssessssasssssssssensmsssssssssssessssssssssnes 13
2.1, PREREQUISITES ..ottt s b e ab e s e s e s b e saa e 13
2.2. DOWNLOADING THE ACCESSORY SDK.....oiiitiiiiiiiiiiiiiiic ittt s e 13
2.3, USING THE LIBRARY ..ottt bbb bbb s sab e s b e s ba s sabe e saa e ns 14
S o o Y R3] [] 14
0 T 1 T I R 14
B 00 10 3 16
3.1, HELLO ACCESSORY ...oiiiiiiitii ittt b e s ab e s b e e s ba e e s b e e s ba e e s b e e s aa e e sab e e s aa s 16
3,20 USING THE SA CLASS ...ttt b e b e e s b e e s b e e s ba e e s b e e s ba e e sabaesbae s 18
3.3. USING ACCESSORY ..ottt b e s e b e b e s a e s b e s ba e s b e s a e sb e 20
4. ACCESSORY IMESSAGE.......cceuuuuuiiiiiiiiiinineiiieiiiiiiiieeiieriettertaeieetestrersaasesseiesstetsnassssssiesseessnasssssssessessannnnssssnes 32
4.1, HELLO MESSAGE ...ttt 32
4.2, USING THE SA CLASS ...t et b e s st s b e s s ba e s s abe e s sabe e enaes 34
4.3, USING ACCESSORY MESSAGE......ccootiiiiiiiiiiiiiiii i ba e s aba e s s aba s 37
5. ACCESSORY FILE TRANSFERittuutiiiiimiiiiiiiiiiieeiiiiineiiinieneiiinisaesiisisnssiisissssiisissssisstsnssssstsnssssssensssssssnsssssssnsnes 42
5.1. HELLO ACCESSORYFILETRANSFERcciiiiiiiiitiiiiiiiiiciitii ittt s aba s s aaaa s 42
5.2, USING THE SAFT CLASS ...oiiiitiiiiitiii it a bbb e e s s bbb s e e s bbb s e s s bbb s e e ssabaaee s 44
5.3 USING ACCESSORY FILE TRANSFERooiiiiiiiiiiitiiie st 45
T 1V o 0 52
LR o 1 IO 0 o] 1 53
L0 7 I 56
6.3, FILE TRANSFER ...ooi bbb bbb s a s s b e s a s sab e aae s 59
6.4, SECURITY ENABLEDutiiiitii it bbb b e ba e s ab e s b e e sab e aae s 64
LR T V10 1 0 I P 68
L STV N I | P 72
6.7. HELLO MESSAGEooiiiiii e bbb s b e a e s 75
72 1@ L 78
728 S =11 78
APPENDIX A. PROGRAMMING TIPSiiiiiiiiieiiiiiiiiiiiiieiinnsseisseeeinss s essssaasesissssessssassssssssssssassnasssssssssssenananes 80
AL, USING FILE TRANSFER ..ot bbb s 80
A.2. VALIDATING ACCESSORY SERVICE PROFILE XML ...ccoiuiiiiiiiiiiiiiiiiiiiiciin it 81
A.3. JAVA REFLECTION CONSTRUCTION.....cuuiiiiiiiitiiiitin ittt s s s 86
A.4. OBFUSCATING THE APPLICATION USING PROGUARDcccoiiviiiitiiiiiictiictic e 87
A.5. RUNNING SAAGENT IN SUB-PROCESS ...ttt s 89
APPENDIX B. SDK MIGRATION ...oiiiiiiiieiiiiiniiiiiiieeeiinn st s rsssaaaes s s e s e s saassss s s s s e s essnasssssssesensnsnassssssssnenns 90

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 2

Accessory Programming Guide

B.l. 2.2.2TO 2.3.0 ORABOVE ...ttt bbb e 90
B.2. GUIDE TO USE ACCESSORY MESSAGE IN LEGACY APPLICATION ...cccuiiiiiiiiiiiiiiiiii i 93
APPENDIX C. USING EMULATOR.......c ittt sssnssssesssiss s e s sssaasss s s s e s e s saasssssssssesessnssssssssssessssnanes 97
APPENDIX D. CREATING GEAR AUTHOR CERTIFICATE USING ANDROID KEYSTOREccottrmmmmunnniiiiiiiiinnenneiiiinnnnns 98
00 O 98

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 3

Accessory Programming Guide

Copyright

Copyright © 2017 Samsung Electronics Co. Ltd. All Rights Reserved.

Though every care has been taken to ensure the accuracy of this document, Samsung Electronics Co., Ltd. cannot accept
responsibility for any errors or omissions or for any loss occurred to any person, whether legal or natural, from acting, or
refraining from action, as a result of the information contained herein. Information in this document is subject to change
at any time without obligation to notify any person of such changes.

Samsung Electronics Co. Ltd. may have patents or patent pending applications, trademarks copyrights or other
intellectual property rights covering subject matter in this document. The furnishing of this document does not give the
recipient or reader any license to these patents, trademarks copyrights or other intellectual property rights.

No part of this document may be communicated, distributed, reproduced or transmitted in any form or by any means,
electronic or mechanical or otherwise, for any purpose, without the prior written permission of Samsung Electronics Co.
Ltd.

The document is subject to revision without further notice.

All brand names and product names mentioned in this document are trademarks or registered trademarks of their
respective owners.

For more information, please visit http://developer.samsung.com/

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 4

http://developer.samsung.com/

Accessory

Programming Guide

1.0verview

Accessory allows you to develop applications on Samsung Smart Devices and Accessory Devices. You can connect
Accessory Devices to Samsung Smart Devices without worrying about connectivity issues or network protocols.

You can use Accessory to:

- Advertise and discover Accessory Services.

- Set up and close Service Connections with one or more logical Service Channels.

- Support Service Connections using a range of connectivity options.

- Configure Accessory Service Profiles and roles for Accessory Peer Agents.

- Support Accessory Message.

A glossary for the Accessory SDK is listed up in the following table.

Term

Description

Accessory Service
Profile

An Accessory Service Profile defines the roles of Service Provider and Service Consumer. It also
specifies the formats for application-level protocol messages and message sequences between Service
Consumers and Service Providers. For example, the Notification Accessory Service Profile defines the
JSON schemas for messages used to send and receive notifications between Samsung Smart Devices
and compliant Accessory Devices. An Accessory Service Profile also defines message sequences
between a notification Service Consumer and a notification Service Provider.

Service Provider

A Service Provider is an application with a role defined in the associated Accessory Service Profile
specification. It accepts incoming Service Connections from Service Consumers and initiates outgoing
Service Connections to Service Consumers. A Service Provider registers with the Samsung Accessory
Service Framework to advertise its services to Service Consumers on connected Accessory Devices. For
example, a notification Service Provider implemented on a Smart Device provides notifications from
that Smart Device to interested Service Consumers on connected Accessory Devices.

Service Consumer

A Service Consumer is an application with a role defined in the associated Accessory Service Profile
specification. It discovers a matching Service Provider using the Capability Exchange Protocol, initiates
outgoing Service Connections with the matching Service Provider, and accepts Service Connection
requests from Service Providers. A Service Consumer uses the information or service provided by the
matching Service Provider. It has to register with the Samsung Accessory Service Framework. For
example, a notification Service Consumer implemented on an Accessory Device receives notification
information from the notification Service Provider on a connected Smart Device.

Accessory Peer Agent

An Accessory Peer Agent is the main interface between the Samsung Accessory Service Framework and
the application implementing a Service Provider or Service Consumer. The Samsung Accessory Service
Framework views both Service Providers and Service Consumers as Accessory Peer Agents.

Service Connection

A Service Connection represents the dialog between a Service Consumer and a Service Provider. It
includes one or more Service Channels for data exchange between a Service Consumer and a Service
Provider.

Service Channel

A Service Channel is a logical data channel between a Service Consumer and a Service Provider. The
channel ID, data rate, priority, and delivery type distinguish Service Channels from each other. While a
Service Connection is a multi-lane highway between a Service Consumer and a Service Provider, the
Service Channel is an individual lane of that highway.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 5

Accessory Programming Guide

Accessory Message An Accessory Message is provided to send or receive a message without establishing a Service
Connection between a Service Provider and a Service Consumer. Both Service Provider and Service
Consumer don’t have to worry about the Service Connection and Service Channel. They only have to
send a message to the desired Accessory Peer Agent.

Table 1: Glossary

1.1.Background

The Accessory eco-system consists of one or more Samsung Smart Devices and Accessory Devices that support the
Samsung Accessory Protocol:
- Smart Devices:
= Samsung smart phone and tablet devices.

= Later releases may include other devices, such as Samsung Smart TVs, cameras, and laptops. Compliant
Smart Devices support the Samsung Accessory Protocol and usually include built-in support for popular
Accessory Service Profiles.

- Accessory Devices:
= Auxiliary devices that connect to Smart Devices.

= Compliant Accessory Devices support the Samsung Accessory Protocol and can interact with compliant
Smart Devices using a range of connectivity options.

The following figure shows the roles in the Accessory eco-system.

mgi@r\

\\ //

SAMSUNG ACCESSORY PROTOCOL
Figure 1: Accessory eco-system

Samsung Smart Devices can support one or more Accessory Services using a manager application with the Samsung
Accessory Service Framework such as Samsung GEAR Manager. The Smart Devices and Accessory Devices described
in this document have the Samsung Accessory Service Framework preloaded.

1.2.Features

Samsung works with domain experts within and outside Samsung to define Accessory Service Profiles. The Accessory
Service Profiles define the application-level state machine and application-level protocol to implement domain-

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 6

Accessory Programming Guide

specific functionalities. For example, the Notification Accessory Service Profile defines an application-level protocol to
convey phone notifications to the connected Accessory Devices.

The Accessory provides the following features:

- Accessory Peer Agent
= Getting the list of Peer Devices.
= Getting the list of services offered by Peer Devices.
= |dentifying the available services between Peer Devices.
- Service Connection
= Creating and storing the Service Connection between Peer Devices.
= Initiating a Service Connection request.
= Processing Service Connection requests from Peer Devices to provide or consume a service.
= (Closing a Service Connection.
- Accessory Message
= Sending a message to a known peer device without Service Connection.
= Receiving a message from a known peer device without Service Connection.

= Acquiring the success acknowledgement or proper error codes in case of a failure.

The Accessory File Transfer uses the File Transfer Service to transfer files between devices. The file is transferred on a
separate service connection.

The Accessory File Transfer provides the following features:

- Sends files to a known peer device.

- Queues file transfer requests from multiple applications.

- Receives incoming file transfer request notifications.

- Receives file transfer progress and completion updates.

- Receives proper error codes in case of a file transfer failure.

- Cancels an ongoing or scheduled file transfer.

1.3.Architecture

Applications such as Calendar Provider and Camera Consumer use Accessory as a facade. Accessory API
communicates with the Samsung Accessory Service Framework that is pre-loaded on Samsung Smart Devices. The
Samsung Accessory Service Framework is built on top of Android stacks of connectivity methods such as Wi-Fi,
Bluetooth, and USB.

The following figure shows the architecture of Accessory.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 7

Accessory Programming Guide

SERVICE PROVIDERS
APPLICATIONS SERVICE CONSUMERS

ACCESSORY LIBRARY

SAMSUNG ACCESSORY SERVICE FRAMEWORK MANAGERS
(SERVICE, ACCESSORY,

SECURITY, NETWORK)

LINUX KERNEL

Figure 2: Accessory Architecture

Accessory Peer Agents like Service Providers and Service Consumers handle concurrent instances. A Service Provider
can accept incoming Service Connections from multiple Service Consumers with the same Accessory Service Profile
(e.g., the notification service). Similarly, a Service Consumer can accept incoming Service Connections from multiple
Service Providers with the same Service Profile.

Every accepted Service Connection request results in the creation of a SASocket object, which represents the dialog
between a Service Provider and a Service Consumer. The Samsung Accessory Service Framework establishes one or
more Service Channels with the QoS parameters defined by the Accessory Service Profile. The SASocket object
encapsulates these Service Channels.

The following figure shows the state machine of an Accessory Peer Agent with a remote Accessory Peer Agent. If
there is more than one remote Accessory Peer Agent, the Accessory Peer Agent can have different states with
different remote Accessory Peer Agents. For example, some remote Accessory Peer Agents can be in a connected
state, while others are in a registered (disconnected) state.

UNREGISTERED

Automatically registered Automatically unregistered
upon installation upon uninstallation

REGISTERED Reject incoming service connection

request/
Accept incoming service connection
request w/error

Rejected outgoing service
connection request/
Accepted outgoing service
connection request w/error

Accept incoming service
connection request

Request outgoing service
connection

Close service connection/
Service connection is lost

Accepted outgoing service connection request

Figure 3: State Machine of Accessory Peer Agent

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 8

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html

Accessory

The figure illustrates the following states:

Programming Guide

- AService Provider or Service Consumer application automatically registers with the Samsung Accessory Service
Framework upon installation and enters a “REGISTERED” state. Similarly, the application automatically
deregisters upon uninstallation and goes to an “UNREGISTERED” state.

- The Accessory Peer Agent enters a “CONNECTING” state when it initiates an outgoing Service Connection with a
matching remote Accessory Peer Agent with the same Accessory Service Profile and a complementary

Provider/Consumer relationship.

- The Samsung Accessory Service Framework establishes a Service Connection if a remote Accessory Peer Agent
accepts a Service Connection request. The Accessory Peer Agent enters a “CONNECTED” state on success. If the
remote Accessory Peer Agent rejects a Service Connection request or if there is a failure, the Accessory Peer
Agent goes back to the “DISCONNECTED” state.

- When a Service Connection request from a remote Accessory Peer Agent is received, the Service Provider or
Service Consumer application is notified and the application accepts or rejects the incoming Service Connection
request. If the application accepts the request, and the Service Connection has been successfully established,
the Accessory Peer Agent enters the “CONNECTED” state. Otherwise, it remains in the “REGISTERED” state.

The following figure shows the sequence flow of the Accessory Peer Agent.

REGISTERS SERVICE

-¢———INDICATES REQUEST
ACCEPTS REQUEST:
SERVICE | INDICATES SERVICE CONNECTION
PROVIDER ESTABLISHMENT
DATA EXCHANGE

CLOSE SERVICE CONNECTION

INDICATES SERVICE CONNECTION

CLOSURE

- ——REGISTERS SERVICE———
< ———QUERIES SERVICE PROVIDER
RETURNS SERVICE PROVIDER OF INTEREST-P>

——ESTABLISH SERVICE CONNECTION

SAMSUNG
ACCESSORY

INDICATES SERVICE CONNECTION
ESTABLISHMENT

DATA EXCHAGE >

INDICATES SERVICE CONNECTION
CLOSURE

SERVICE

FRAMEWORK

—

Figure 4: Sequence flow of Accessory Peer Agent

The above figure illustrates the following flow of Accessory Peer Agent:

The Service Provider and Service Consumer applications register their service capabilities with the Samsung Accessor

y Service Framework. The Samsung Accessory Service Framework advertises and exchanges the capabilities of the reg

istered Service Providers and Service Consumers.

The Service Consumer looks for Service Providers of interest, and queries the Samsung Accessory Service Framework,
which in turn queries the services offered by connected Accessory Devices.

The Service Consumer attempts to establish a Service Connection with the Service Provider. A Service Provider can al

so try to establish Service Connections with Service Consumers.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved.

Page | 9

Accessory

Programming Guide

The Service Provider decides to accept or reject the Service Connection request. If the Service Provider attempts to e

stablish a connection, the Service Consumer decides to accept or reject the Service Connection request.

The Service Connection is established once all the Service Channels defined by the associated Accessory Service Profil

e are created. The Service Consumer and Service Provider use the established Service Connection to read and write d

ata following the associated Accessory Service Profile specification on the Service Channels.

The following figure shows the relationship between classes and interfaces of the

com.samsung.android.sdk.accessory. Detailed information for each class and interface can be found in the API

Reference under Accessory\Docs\API Reference folder.

]

com.samsung.android.sdk.accessory

SAPeerAccessory

SA
+getVersionCode()
+getVersionName()
+initialize()
+isFeatureEnabled()

SAAgent

#acceptServiceConnectionRequest()
FauthenticatePeerAgent() SASacket
:findPeerAgent_s() o
;onéuthe(:)rmoatwnResponse() +;§t%e<81nectedpeerAgen(()
#onError .
#onFindPeerAgentResponse() +isConnected()
#onFindPeerAgentsResponse() g 7 ig:srerg;%e()
#onPeerAgentsUpdated() i ! :
ZonPeerAgentUpdated|) :onSemSceCdonnectlonLost()
#onServiceConnectionRequested() secureSend()
#onServiceConnectionResponse() +send()
#rejectServiceConnectionRequest()
#requestServiceConnection()
+getServiceProfileld()
+getServiceProfileName() SAPeerAgent
+getServiceChannelSize() seregen
+getServiceChannelld() Ty T

3 +getAppName()

+getMaxAllowedDataSize()

' +getPeerld()

+getProfileVersion()
+getMaxAllowedMessageSize()
+isFeatureEnabled()

+getAccessoryld()
+getAddress()
+getName()
+getProductld()
+getTransportType()
+getVendorld()

v
SAAuthenticationToken

+getAuthenticationType()

+getKey() SAMessage

+send()
+secureSend()
#onReceive()
#onSent()
#onError()

Figure 5: Accessory Class diagram

Copyright © Samsung Electronics, Co., Ltd. All rights reserved.

Page | 10

Accessory Programming Guide

Its interfaces and classes are described in the following table.

Interface / Class Description

SA Initializes Accessory.

SAAgent Represents an Accessory Peer Agent. Both Service Provider and Service Consumer implementations
are expected to extend this class for each Accessory Service Profile instance they implement. This
class exposes request methods creating outgoing Service Connections with matching remote Acces-
sory Peer Agents. In case Accessory Peer Agent sends an outgoing Service Connection request, your
application is notified when the request result becomes available (with Service Connection
establishment, a rejection by the remote Accessory Peer Agent, or due to a failure). Remote Acces-
sory Peer Agents can also initiate Service Connection requests with Accessory Peer Agent.

The application is expected to implement the method handling for incoming Service Connection
requests and decide to accept or reject incoming Service Connection requests (trigger Ul activities if
needed). If a Service Connection is successfully established, both Accessory Peer Agents (Service
Provider and Service Consumer at both ends of the Service Connection) are notified with a callback
with an instance of the SASocket object passed by the Samsung Accessory Service Framework.

SASocket Represents a Service Connection between a Service Provider and a Service Consumer. This class
handles Service Connection related events. Both the Service Consumer and Service Provider
implementations extend this class to send and receive data on established Service Channels accord-
ing to the Accessory Service Profile specification.

SAMessage Represents an instance for a Message Service between a Service Provider and a Service Consumer.
Both the Service Consumer and Service Provider implementations extend this class to send and
receive a message without established Service Channels by both applications.

SAPeerAgent Represents a remote Accessory Peer Agent. This is a passive entity that encapsulates the infor-
mation of the remote Accessory Peer Agent. The remote Accessory Peer Agent includes information
such as the version of the Accessory Service Profile specification that the Accessory Peer Agent
implements or follows, the application name, and the Accessory Device.

SAPeerAccessory Represents a remote Accessory Device. It is a component of SAPeerAgent. SAPeerAccessory is a pas-
sive entity encapsulating the information of an Accessory Device. It includes information such as
the vendor ID, product ID, device name, and address.

SAAuthenticationToken Stores the type of authentication (Currently, it only supports X.509 certificate), and the key
corresponding to the authentication type.

NOTE. The Authentication may not be working properly depending on the firmware version of
accessory device. It is recommended to upgrade accessory device firmware if possible.

Table 2: Accessory Interfaces and classes

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 11

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAccessory.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAccessory.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAuthenticationToken.html

Accessory Programming Guide

The following figure shows the relationship between classes and interfaces of the
com.samsung.android.sdk.accessoryfiletransfer. Detailed information for each class and interface can be
found in the API Reference under the Accessory\Docs\API Reference folder.

com.samsung.android.sdk.accessoryfiletransfer

SAFileTransfer

+eancel() SAft
+cancelAll()
+close() +initialize()

+receivel) +isFeatureEnabled()
+reject()
+send()

O

Interface

EventlListener

+onCancelAllCompleted()
+onProgressChanged()
+onTransferCompleted|)
+onTransferRequested|)

Figure 6: Accessory File Transfer Class diagram

Its interfaces and classes are described in the following table.

Interface / Class Description

SAft Initializes Accessory File Transfer.

SAFileTransfer Provides the file transfer methods. Sending and receiving applications need to use the
Accessory File Transfer class. Each SAAgent implementation can make their own
SAFileTransfer object and call each method on it. This class also registers the SAAgent
implementation using Accessory File Transfer and the SAFileTransfer.EventListener
implementation where file transfer updates are notified.

SAFileTransfer.EventListener Listens to file transfer update notifications.

Table 3: Accessory File Transfer Interfaces and classes

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 12

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAft.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html

Accessory Programming Guide

2.Development Environment

To develop applications with the Accessory SDK, check prerequisites for the SDK first and download the SDK.

2.1.Prerequisites

Before downloading the Accessory SDK and starting to develop an application, refer to the following information.
Android Version

Android 4.3 (API 18) or above
Available Devices

Android 4.3 or above devices
Limitations

Samsung Accessory Service Framework should be installed on the device before launching an application.

2.2.Downloading the Accessory SDK

The Accessory SDK can be downloaded in the Samsung developer site. If the downloaded SDK is unzipped, you can
check the following content for the application development.

Folder in SDK Description

Docs API Reference with Javadoc

Programming guide

Libs accessory-v2.5.3.jar

Provides Samsung Accessory SDK Library
sdk-v1.0.0.jar

Provides Samsung SDK Library

Samples Samples(Native)
Shows interactions between Smart device and Remote device(Native Application) using Accessory SDK
Samples(Web)

Shows interactions between Smart device and Remote device(Web Application) using Accessory SDK

Tools Application for Emulator
Helps to develop SAMSUNG GEAR application using GEAR IDE without actual devices

NOTE. The android-support-v4 Library is necessary for using Accessory File Transfer.

Table 4: SDK content

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 13

http://developer.samsung.com/galaxy#accessory

Accessory Programming Guide

Emulator APK

This is used to develop SAMSUNG GEAR application using GEAR IDE without actual devices.

2.3.Using the Library

After adding the Accessory library under 1ibs folder in your created application project, import the package in your
code as below:

import com.samsung.android.sdk.accessory.*;

When using the Samsung Accessory File Transfer feature, import the necessary packages in your code as shown be-
low:

import com.samsung.android.sdk.accessoryfiletransfer.*;
import com.samsung.android.sdk.accessoryfiletransfer.SAFileTransfer.*;

2.4.Permission

To use Accessory, it needs the permission below. If it is not added in the AndroidManifest.xml file, the initialization
will fail with SecurityException.

<uses-permission
android:name="com.samsung.android.providers.context.permission.WRITE_USE_APP_FEATURE_SURVEY" />

If you don’t add the permission,

- For Samsung device,

e Android 4.4.2 (KitKat) and above: SecurityException is thrown and your application won’t work.
e Prior to Android 4.4.2 (KitKat): No exception and the application will work properly.

- For other companies,

= No exception and the application will work properly.
The following permissions have to be specified in the AndroidManifest.xml file to use Samsung Accessory Service:

<uses-permission android:name="android.permission.BLUETOOTH" />
<uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />
<uses-permission android:name="com.samsung.accessory.permission.ACCESSORY_FRAMEWORK" />

2.5.Tools

The Accessory SDK provides tools for its application development.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 14

http://developer.android.com/reference/java/lang/SecurityException.html
http://developer.android.com/reference/java/lang/SecurityException.html

Accessory Programming Guide
Emulator

This is used to develop SAMSUNG GEAR applications using GEAR IDE without actual devices.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 15

Accessory Programming Guide

3. Accessory

3.1.Hello Accessory

Hello Accessory is a pseudo code example to show how to:

- Initialize Accessory.
- Connect with the remote Accessory Peer Agent.
- Send and receive JSON messages between Accessory Peer Agents.

For more information about sample applications, please visit
http://developer.samsung.com/gear/develop/samples/companion

Hello Accessory is composed of two parts: Consumer and Provider.

3.1.1.Consumer Application
Consumer application has the functionalities below
= |nitiates service connection request and sends command to Service Provider.
= Shows a received response to user.

class HelloAccessoryConsumer extends SAAgent {

void onCreate() {
Create SA;
try {
Initialize SA;
} catch (Exception e) {
// Error Handling

void onStart() {
// Find Peer Agent
FindPeerAgent();

void onFindPeerAgentResponse(SAPeerAgent peerAgent, int result) {
// Store found Peer Agent if success
if (result == PEER_AGENT_FOUND) {
Cache(peerAgent);
RequestServiceConnection(peerAgent);

void onServiceConnectionResponse(SAPeerAgent peerAgent, SASocket socket, int result) {
// if result is successful, cache socket for using on sending message
Cache(socket);
Create WorkerThread(

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 16

http://developer.samsung.com/gear/develop/samples/companion

Accessory
try {
message = composeMessage();
Send(channel id, message);
} catch (Exception e) {
// Error handling
}
)s
}

class ServiceConnection extends SASocket {
public void onReceive(int channelId, byte[] data) {
// Check received data
Parse(data);
// Create a worker thread and show message to user
Create WorkerThread(
Show(message);

s

void onServiceConnectionLost(int errorCode) {
// Reset cached peer agent and close service connection
ResetCache();
Close();

void onError(int channelld, String errorString, int error) {
// Error handling

3.1.2.Provider Application
Provider application has the functionalities below

= Accepts a received service connection request from Service Consumer.

= Replies to a received command from Service Consumer with current time stamp.

class HelloAccessoryProvider extends SAAgent {

void onCreate() {
Create SA;
try {
Initialize SA;
} catch (Exception e) {
// Error Handling

void onStart() {
// Find Peer Agent
FindPeerAgent();

Copyright © Samsung Electronics, Co., Ltd. All rights reserved.

Programming Guide

Page | 17

Accessory Programming Guide

}

void onFindPeerAgentResponse(SAPeerAgent peerAgent, int result) {
// Store found Peer Agent if success
if (result == PEER_AGENT_FOUND) {
Cache(peerAgent);

void onServiceConnectionRequested(SAPeerAgent peerAgent) {
// Received service connection request from remote, decide whether to accept or to reject.
Accept(peerAgent);

void onServiceConnectionResponse(SAPeerAgent peerAgent, SASocket socket, int result) {
// if result is successful, cache socket for using on sending message
Cache(socket);

class ServiceConnection extends SASocket {
void onReceive(int channelld, byte[] data) {

// Check received data

Parse(data);

// Create a worker thread and send message to Consumer

Create WorkerThread(
message = composeMessage();
CachedSocket.Send(channel id, message);

)5

void onServiceConnectionLost(int errorCode) {
// Reset cached peer agent and close service connection
ResetCache();
Close();

void onError(int channelld, String errorString, int error) {
// Error handling

3.2.Using the SA Class

The SA class provides the following methods:

- initialize() initializes Accessory. You need to initialize Accessory before you can use it. If the device does not
support Accessory, SsdkUnsupportedException is thrown.

- getVersionCode() gets the Accessory library version number as an integer.

- getVersionName() gets the Accessory library version name as a string.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 18

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#initialize(android.content.Context)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#getVersionCode()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#getVersionName()

Accessory Programming Guide

- isFeatureEnabled() checks if the Accessory feature is available on the device.

SA sa = new SA();

try {

sa.itialize(applicationContext) {

boolean isFeatureEnabled = sa.isFeatureEnabled(SA.DEVICE_ACCESSORY);
} catch (final SsdkUnsupportedException e) {

// try to handle SsdkUnsupportedException

if (e.getType() == SsdkUnsupportedException.LIBRARY_NOT_INSTALLED) {
// You should install service application first.

}

} catch (Exception el) {
// Your application cannot use Accessory. Your application should work smoothly without
// using Accessory, or you may want to notify the user and close your application

// gracefully (release resources, stop Service threads, close UI thread, etc.)
return;

int versionCode = sa.getVersionCode();
String versionName = sa.getVersionName();

3.2.1.Using initialize()
The SA.initialize() method:

- Initializes Accessory.
- Checks if the device is a Samsung device.
- Checks if the device supports Accessory.

- Checks if Accessory libraries are installed on the device.

If Accessory fails to initialize, the SA.initialize() method throws an SsdkUnsupportedException exception. To
find out the reason for the exception, check the exception message.

void initialize(Context context) throws SsdkUnsupportedException

3.2.2.Handling SsdkUnsupportedException

If an SsdkUnsupportedException exception is shown, check the exception message type using
SsdkUnsupportedExcpetion.getType().

The following types of exception messages are defined in the SA class:

- LIBRARY_NOT_INSTALLED: The Samsung Accessory Service Framework is not installed on the device.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 19

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#isFeatureEnabled(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#initialize(android.content.Context)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#initialize(android.content.Context)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html#getType()

Accessory Programming Guide

3.2.3.Checking the Availability of Accessory

The application can check if the Accessory feature is supported on the device with the SA.isFeatureEnabled()
method. The feature types are defined in the SA class. The feature type is passed as a parameter when calling the SA.
isFeatureEnabled() method. The method returns a Boolean value that indicates the support for the feature on the
device.

The following type is defined in the SA class:

- DEVICE_ACCESSORY

boolean isFeatureEnabled(int type)

3.3.Using Accessory

The following chapter describes how to use Accessory.

3.3.1.Declaring Broadcast Receiver

Communicating with the remote Peer Agent needs the broadcast receiver below. If it is not added in the
AndroidManifest.xml file, any intent handled by Samsung Accessory Service Framework is not delivered to the
developer’s created application.

<application>

<receiver
android:name="com.samsung.android.sdk.accessory.ServiceConnectionIndicationBroadcastReceiver">
<intent-filter>
<action android:name="com.samsung.accessory.action.SERVICE_CONNECTION_REQUESTED" />
</intent-filter>
</receiver>
<receiver android:name="com.samsung.android.sdk.accessory.RegisterUponInstallReceiver">
<intent-filter>
<action android:name="com.samsung.accessory.action.REGISTER_AGENT" />
</intent-filter>
</receiver>

</application>

NOTE. Name of actions are changed from 2.3.0. The old actions are not anymore supported in the latest Accessory
SDK.

Communicating with the remote Peer Agent needs the declaration of a service in the AndroidManifest.xml. This
ensures that the application is derived from the class SAAgent.

<application>

<service android:name="the class name that extends SAAgent" />

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 20

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#isFeatureEnabled(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#isFeatureEnabled(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#isFeatureEnabled(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html

Accessory Programming Guide
</application>

NOTE. The SAAgent class extends the Android service and handles asynchronous Accessory-related intents. Its
implementation executes all of its activities in a worker thread, which means it does not overload the developer’s
created application main thread.

3.3.2.Defining Accessory Service Profile

Communicating with remote Peer Agent needs the declaration of descriptions about Accessory Service Profile. This is
declared in a separate file in /res/xml folder in the developer’s application project. The path of the actual XML file can
be added in the application’s AndroidManifest.xml.

For example, /res/xml/<profileName>.xml:

<application>
<meta-data android:name="AccessoryServicesLocation" android:value="/res/xml/<profileName>.xml" />

</application>

Its elements and attributes are described in the following table.

Element Attribute Description

application name The name that you want the Samsung Accessory Service Framework to advertise in
the Accessory eco-system. Usually the application's Android AppName is used. You
can implement multiple Service Providers and Service Consumers in one application.
In that case, declare multiple <serviceProfile> elements inside the <application>
element.

NOTE. This attribute allows up to 30 characters.

serviceProfile servicelmpl The subclass that extends SAAgent.

role The direction to serve an associated service to Accessory Peer Agents.

NOTE. The value must be either “provider” or “consumer”

name The name of your Service Provider or Service Consumer.
NOTE. This attribute allows up to 30 characters.

id The Service Profile ID of the Service Provider or Service Consumer.

NOTE. It is necessary to start with ‘/’. It then allows [0-9], [a-z], *_" and /" (as
delimiter). This attribute allows up to 30 characters.

version The Service Profile specification version that your Service Provider or Service
Consumer application supports. This attribute is represented as a two-part string
with the following format: <major>.<minor>.

NOTE. The major version and minor version have a maximum value of 255.

serviceLimit* The number of Accessory Peer Agents that you want to connect with concurrently. If
an Accessory Peer Agent requests a Service Connection with your application after

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 21

file:///C:/SVN/document/SDK/Release/SVN/document/SDK/mySingle/AppData/Local/Microsoft/Windows/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/workspace/AppcessorySDK/doc/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html

Accessory Programming Guide

you have reached the limit, the Samsung Accessory Service Framework rejects the
Service Connection request. The attribute can be one of the following values:

one_peeragent

: Supports only one Accessory Peer Agent
one_accessory

: Supports only one Accessory Device

: Can have Service Connections to multiple Accessory Peer Agents on an
Accessory Device

any
: Supports multiple Accessory Peer Agents on multiple Accessory Devices

NOTE. If you do not set the value, “any” is applied by default.

serviceTimeout* The timeout in seconds for handling incoming Service Connection requests. This
attribute is optional. If you do not set the value, the default timeout is applied. Use
the default timeout unless your application needs more time to make a decision to
accept or reject incoming Service Connection requests. If it is needed, e.g., in cases
when it needs to connect to a cloud server, show a Ul prompting the user to either
accept or reject the request. On the other hand, if it needs to do authentication, set
the attribute value for the timeout of the decision. If the timeout has exceeded, the
requesting Accessory Peer Agent gets the response that Service Connection failed
because your application did not respond.

NOTE. This attribute allows up to 300 seconds.

serviceProfile transport The transports on which the Service Provider or Service Consumer is able to
supportedTransports operate. The Samsung Accessory Service Framework supports the
TRANSPORT_WIFI, TRANSPORT_BT, TRANSPORT_BLE, and TRANSPORT_USB
transport types. If your Service Provider or Service Consumer supports multiple
transport types, declare multiple <transports> elements.

NOTE. The current version of the Samsung Accessory Service Framework supports
TRANSPORT_BT and TRANSPORT_WIFI (only for Emulator). Other types will be
supported soon.

serviceChannel dataRate The throughput at which data traffic originated from the Accessory Agent.
NOTE. The value must be either “low” or “high”.

priority The basis on which the application prioritizes transmissions of messages to
Accessory Peer Agent.

NOTE. The value must be either “low”, “medium”, or “high”.

reliability The basis on which the application can have a reliable transfer or not. In case of a
packet drop, a reliable transfer re-transmits the packet but also creates additional
overhead.

NOTE. The value must be either “enable” or “disable”.

NOTE. Optional attributes are denoted with an asterisk (*).
Table 5: Defining Accessory Service Profile

An example of Accessory Service Profile XML:

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 22

Accessory Programming Guide

<resources>
<application name="ProviderExample">
<serviceProfile
serviceImpl="com.samsung.accessory.example.providerServiceImpl"
role="provider"
name="ExampleService"
id="/app/example"
version="1.0"
serviceLimit="any"
serviceTimeout="10">
<supportedTransports>
<transport type="TRANSPORT_BT"/>
</supportedTransports>
<serviceChannel
id="910"
dataRate="1ow"
priority="high"
reliability="enable"/>
</serviceProfile>
</application>
</resources>

When the application is installed, the Samsung Accessory Service Framework automatically registers its Accessory
Peer Agents using the information specified in your Service profile XML file. Similarly, the Accessory Peer Agents are
deregistered when the application is uninstalled. An error log is dumped if the registration process fails to register
the Accessory Service Profile implementation. To define the Accessory Service Profile, refer to A.2.

3.3.3.Finding Accessory Peer Agents

Service Provider or Service Consumer application can search for matching Accessory Peer Agents by calling the SAAge
nt.findPeerAgents() method. Matching Accessory Peer Agents have the same Accessory Service Profile, i.e.,
Notification Service or Weather Service, and have a complementary provider or consumer relationship with the
calling Accessory Peer Agent. Accessory Peer Agents with different Accessory Service Profiles for Service Providers or
Service Consumers do not “match” and cannot be connected with each other. If two Accessory Peer Agents have the
same Accessory Service Profile with different versions, however, they are still considered to “match”. For example,
Notification Service Consumer that implements the Notification Service Profile version 2.0 and a Notification Service
Provider that implements the Notification Service Profile version 1.0 “match”.

The application searches for matching Peer Agents by calling SAAgent. findPeerAgents(). If matching Peer Agents
are found, it is notified by the function called SAAgent.onFindPeerAgentResponse() . If a matching Peer Agent is
not found, it is notified with the same callback. The result will have a null Peer Agent and the reason why there’s no
match found.

@Override
protected void onFindPeerAgentResponse(SAPeerAgent peerAgents[], int result) {

switch(result) {
case PEER_AGENT_FOUND:
// Peer Agent is found
break;
case FINDPEER_DEVICE_NOT_CONNECTED:
// Peer Agents are not found, no accessory device connected
break;

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 23

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onFindPeerAgentsResponse(com.samsung.android.sdk.accessory.SAPeerAgent[],%20int)

Accessory Programming Guide

case FINDPEER_SERVICE_NOT_FOUND:
// No matching service on connected accessory

break;

3.3.4.Setting up Service Connection

If the application wants to establish a Service Connection with only one Accessory Peer Agent, check the first callback.
You can also check the identity or properties of the discovered Accessory Peer Agents by calling the methods
provided by the SAPeerAgent class to decide which Accessory Peer Agent you want to form a Service Connection
with. The application can initiate a Service Connection with an Accessory Peer Agent by calling
SAAgent.requestServiceConnection().

This method is called from a worker thread. If you need to do any heavy lifting or long latency work in this callback,
spawn a separate thread.

If a Service Provider connects only with a specific Service Consumer, or a Service Consumer with a specific Service
Provider, the Service Provider and Consumer are called as “companion apps”. When you only want to connect to a
companion Service Provider or Service Consumer, call the methods provided by the SAPeerAgent class for specific
information, such as model number or vendor information, before calling SAAgent.requestServiceConnection().
For example, when a photo printer Service Provider on an Accessory Device from a company only wants to connect
to a photo printer Service Consumer on a Smart Device from the same company, they are companion apps.

The remote Accessory Peer Agent either accepts or rejects your Service Connection request. Your application is
notified with the SAAgent.onServiceConnectionResponse() callback. The request can either be accepted and a
Service Connection is established, rejected, or failed to establish Service Connection for other reasons.

When a Service Connection is successfully established, the requesting Accessory Peer Agent gets an instance of the
SASocket object, which is used to handle Service Connection events and to send data or receive it from Accessory
Peer Agents.

@Override
protected void onFindPeerAgentResponse(SAPeerAgent peerAgents[], int result) {

switch(result) {

case PEER_AGENT_FOUND:
// Peer Agent is found
requestServiceConnection(peerAgent);
break;

case FINDPEER_DEVICE_NOT_CONNECTED:
// Peer Agents are not found, no accessory device connected
break;

case FINDPEER_SERVICE_NOT_FOUND:
// No matching service on connected accessory

break;
¥

SASocket mSocket = null;
Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 24

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#requestServiceConnection(com.samsung.android.sdk.accessory.SAPeerAgent)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#requestServiceConnection(com.samsung.android.sdk.accessory.SAPeerAgent)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onServiceConnectionResponse(com.samsung.android.sdk.accessory.SAPeerAgent,%20com.samsung.android.sdk.accessory.SASocket,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html

Accessory Programming Guide

@Override
protected void onServiceConnectionResponse(SAPeerAgent peerAgent, SASocket socket, int result) {
if(result == CONNECTION_SUCCESS) {
// It 1is passed when a Service Connection has been established.
mSocket = socket;

NOTE. If setting up Service Connection failed continuously, it is your application's responsibility to call SAAgent.findPe
erAgents() to try to re-find the remote Accessory Peer Agent and SAAgent.requestServiceConnection() to make
Service Connection request again.

3.3.5.Handling Setup Service Connection Request

The Service Provider or Consumer application is notified with the SAAgent.onServiceConnectionRequested()
callback when remote Accessory Peer Agents want to create a Service Connection with it. The Accessory Peer Agent
implementation can accept or reject Service Connection requests by calling the acceptServiceConnectionRequest
() or rejectServiceConnectionRequest() methods, respectively. The default implementation of the SAAgent.onS
erviceConnectionRequested() callback method is to accept every incoming Service Connection request from any
remote Accessory Peer Agent. Your Accessory Peer Agent implementation can override this method, usually to check
the identity and properties of the requesting remote Accessory Peer Agent before accepting or rejecting incoming
Service Connection requests.

The SAAgent.onServiceConnectionRequested() callback can check for Accessory Peer Agent specific information
before accepting Service Connection requests. You can use the SAPeerAgent object methods for checking specific
information, such as application name or vendor ID.

If your application accepts the Service Connection request, your application is notified through the SAAgent.onServi
ceConnectionResponse() callback when the Service Connection is established or a failure occurs. On success, a
SASocket object is passed with the callback. If you want to implement a Service Provider application that can serve
multiple Service Consumer applications at the same time, keep a repository of the SASocket objects for all active
Service Connections, and give an identifier for each SASocket object.

The SAAgent.onServiceConnectionResponse() callback is called from a worker thread. If you need to do any
heavy lifting or long latency work in this callback, spawn a separate thread.

@Override
protected void onServiceConnectionRequested(SAPeerAgent peerAgent) {
// Makes a decision after checking the validation of given information.
String vendorId = peerAgent.getAccessory().getVendorId();
String productId = peerAgent.getAccessory().getVendorId();
if (vendorId.equals("SAMSUNG ELECTRONICS") && productId.equals("SAMSUNG GEAR")) {
// If connected accessory is the right device
acceptServiceConnectionRequest(peerAgent);
} else {
// If connected accessory is not the right device
rejectServiceConnectionRequest(peerAgent);

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 25

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onServiceConnectionRequested(com.samsung.android.sdk.accessory.SAPeerAgent)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#acceptServiceConnectionRequest(com.samsung.android.sdk.accessory.SAPeerAgent)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#acceptServiceConnectionRequest(com.samsung.android.sdk.accessory.SAPeerAgent)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#rejectServiceConnectionRequest(com.samsung.android.sdk.accessory.SAPeerAgent)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onServiceConnectionRequested(com.samsung.android.sdk.accessory.SAPeerAgent)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onServiceConnectionRequested(com.samsung.android.sdk.accessory.SAPeerAgent)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onServiceConnectionRequested(com.samsung.android.sdk.accessory.SAPeerAgent)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onServiceConnectionResponse(com.samsung.android.sdk.accessory.SAPeerAgent,%20com.samsung.android.sdk.accessory.SASocket,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onServiceConnectionResponse(com.samsung.android.sdk.accessory.SAPeerAgent,%20com.samsung.android.sdk.accessory.SASocket,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onServiceConnectionResponse(com.samsung.android.sdk.accessory.SAPeerAgent,%20com.samsung.android.sdk.accessory.SASocket,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#requestServiceConnection(com.samsung.android.sdk.accessory.SAPeerAgent)

Accessory

Programming Guide

SASocket mSocket = null;

@Override

protected void onServiceConnectionResponse(SAPeerAgent peerAgent, SASocket socket, int result)

{

switch(result) {

case CONNECTION_SUCCESS:
// Peer Agent 1is found, store it for sending data
mSocket = socket;
break;
case CONNECTION_FAILURE_NETWORK:
// Try to request service connection again after a while
break;
case CONNECTION_ALREADY_EXIST:
// Previous Service Connection 1is alive. Reuse it
break;
case CONNECTION_FAILURE_PEER_AGENT_REJECTED:
// Peer Agent Rejected. Try to request service connection again after a while

break;
case CONNECTION_FAILURE_PEER_AGENT_NO_RESPONSE:
// Peer Agent no response. Try to request service connection again after a while

break;
case CONNECTION_FAILURE_DEVICE_UNREACHABLE:
// Accessory Device not reachable, may already be disconnected

break;
default:

// Service Connection Fail, non-recoverable error

break;

3.3.6.Exchanging Data with Accessory Peer Agent

Call the SASocket.send() method of the SASocket object passed with the SAAgent.onServiceConnectionRespons
e () callback to send data on the selected Service Channel inside an established Service Connection. The Samsung
Accessory Service Framework provides a datagram service. Either all the data is sent or nothing is sent. The Service
Connection encapsulates all Service Channels as defined by the Accessory Service Profile specification. You can get
the Channel ID from SAAgent.getServiceChannelld().

Do not send a byte array bigger than SAPeerAgent.getMaxAllowedDataSize(), which returns the size limit that you
can send to the remote Accessory Peer Agent. The limit is a variable that depends on transport type and memory size
of the remote Accessory Device.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved.

Page | 26

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#send(int,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onServiceConnectionResponse(com.samsung.android.sdk.accessory.SAPeerAgent,%20com.samsung.android.sdk.accessory.SASocket,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onServiceConnectionResponse(com.samsung.android.sdk.accessory.SAPeerAgent,%20com.samsung.android.sdk.accessory.SASocket,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#PEER_AGENT_AVAILABLE
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html#getMaxAllowedDataSize()

Accessory Programming Guide

try {
mSocket.send(channel id, mJsonStringToSend.getBytes());

} catch (IOException e) {
// Handle exception

NOTE. SASocket.send() and SASocket.secureSend() methods are called from a worker thread. If you need to do
any heavy lifting or long latency work in this callback, spawn a separate thread. DO NOT invoke this method in the
main thread of the application.

If you want your data encrypted, call SASocket.secureSend() instead of SASocket.send().

When your application receives data from a remote Accessory Peer Agent, it is notified with the SASocket.onReceiv
e() callback. Implement the SASocket.onReceive() method to handle the data.

public class ServiceConnection extends SASocket{
@Override
public class onReceive(int channelId, byte[] data) {
String str = new String(data);

3.3.7.Disconnecting Service Connection

Call the SASocket.close() method in the SASocket object to terminate the Service Connection with the remote
Accessory Peer Agent. The remote Accessory Peer Agent is notified with the SASocket.onServiceConnectionLost()
callback and the Samsung Accessory Service Framework closes all the established Service Channels of the Service
Connection. If a remote Accessory Peer Agent calls SASocket.close() to terminate the Service Connection, your
application is notified with the same callback.

public boolean closeConnection() {
if (mSocket != null) {
mSocket.close();
mSocket = null;

}

return true;
¥
@Override

public void onServiceConnectionLost(int reason) {
// This function is called when Service Connection is broken or Llost
// or there 1s a peer disconnection.
switch (reason) {
case CONNECTION_LOST_DEVICE_DETACHED:
// If the Peer Agent 1is killed because of LMK OOM, call SAAgent.findPeerAgents()
// and request Service Connection. Accessory will invoke Peer Agent in your method
// implementation. You should follow the procedures in “Finding Peer Agents” and
// “Setting Up Service Connection™.
break;
case CONNECTION_LOST_PEER_DISCONNECTED:

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 27

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#secureSend(int,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#send(int,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#onReceive(int,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#onReceive(int,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#onReceive(int,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#close()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#onServiceConnectionLost(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#close()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#send(int,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#secureSend(int,%20byte[])

Accessory Programming Guide

// If device 1is out of range, or connectivity (BT, Wi-Fi, and etc.) 1is turned off.
break;
case CONNECTION_LOST_UNKNOWN_REASON:
// Though it rarely happens, the error may be recoverable or not.
// You may want to call SAAgent.findPeerAgents().
// If found, you may want to re-connect in your method implementation.

// you should follow the procedures in “Finding Peer Agent” and
// “Setting Up Service Connection”.

break;

If a Service Connection is lost, for instance, due to a network failure or devices leaving the wireless connectivity range,
the Accessory Peer Agents are notified with the SASocket.onServiceConnectionLost() callback. However, it is not
necessary to close in the SASocket.onServiceConnectionLost() callback, since the Service connection is already
closed and cleaned up. You can handle these events by implementing the method illustrated in the following
example.

NOTE. If you want to restore Service Connection, it is your application's responsibility to call SAAgent.findPeerAgent
s() to try to re-find the remote Accessory Peer Agent and SAAgent.requestServiceConnection() to make Service
Connection request again.

3.3.8.Handling Errors

Application is notified with the SAAgent.onError() callback about errors related with Service Channels, Accessory
Peer Agents and Samsung Accessory Service Framework. For detailed error types, see the API reference.

@0verride
public void onError(SAPeerAgent peerAgent, String errorMessage, int errorCode) {
switch (errorCode){
case ERROR_CONNECTION_INVALID PARAM:
// Data cleared by user(in Settings-> Application Manager-> Clear data)
// or data lost for other reasons except run-time recoverable errors and reboot is
// needed, you may want to exit the application.
break;
case ERROR_FATAL:
// Samsung Accessory Service Framework died or binding failure
// Fatal error, you need to stop using Accessory
break;
case ERROR_PERMISSION_DENIED:
// Required permission missed, check the AndroidManifest.xml
break;
case ERROR_PERMISSION_FAILED:
// Permission failure when application is installed before Samsung Accessory Service
// Framework is installed. Reinstallation of the application might be needed
break;
case ERROR_SDK _NOT_INITIALIZED:
// Samsung Accessory SDK is not initialized

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 28

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#onServiceConnectionLost(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#onServiceConnectionLost(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#onError(int,%20java.lang.String,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#requestServiceConnection(com.samsung.android.sdk.accessory.SAPeerAgent)

Accessory Programming Guide

// It's necessary to install Samsung Accessory Service Framework and call SA.initialize()
break;

Below are some transient errors due to Android environment:

- Low memory

= |tis recommended to close all Service Connection in the onLowMemory () callback of your SAAgent
implementation (onLowMemory () is an inherited method from Service) to release caches.

= If your application process is killed by Android Low Memory Killer (LMK), it will notify the
SASocket.onServiceConnectionLost() callback. Your application or peer applications should create
Service Connection again upon restart.

- Application crash or onDestroy()

= [f the application crashed from whatever reason, all Service Connections will be terminated. Upon
restart, it is your application’s responsibility to restore the Service Connection.

= When the SAAgent implementation is being removed by Android (will get SAAgent.onDestroy()), all
Service Connections with the Accessory Peer Agent will be terminated.

= |f your application has cashed references of SAPeerAgent object, they can be cleared in using
SAAgent.onDestory(). Your application can refresh SAPeerAgent object with a fresh call to
SAAgent.findPeerAgents() when you application is restarted.

- SAMSUNG ACCESSORY SERVICE be killed

= |[f SAMSUNG ACCESSORY SERVICE is killed on a local device, application will be notified with an
ERROR_FATAL callback error code. In this case, your application needs to stop using Accessory. After
restoring SAMSUNG ACCESSORY SERVICE, it will automatically make application ready to set up a service
connection via the broadcast receiver.

- Application stopSelf()

= |tisstrongly recommended to close Service Connections before the application stops itself. Calling
stopSelf() notifies the Accessory Peer Agent in a graceful way. If stopSelf() is not called, all Service
Connections will be terminated SAMSUNG ACCESSORY SERVICE and both sides will receive the
SASocket.onServiceConnectionLost() callback. Your application or peer application should find the
remote Accessory Peer Agent and create Service Connection again upon restart.

NOTE. If you want to restore Service Connection, it is your application's responsibility to call SAAgent.findPeerAgent
s() to try to re-find the remote Accessory Peer Agent and SAAgent.requestServiceConnection() to make Service
Connection request again.

3.3.9.Indicating the status of Accessory Peer Agent

After you call SAAgent.findPeerAgents(), the Samsung Accessory Service Framework keeps track of any changes in
the availability of the matching Accessory Peer Agents for your application. If a change occurs, your application is
notified with the SAAgent.onPeerAgentUpdated() callback. This happens especially when an Accessory Device with
a matching Accessory Peer Agent is connected or disconnected, or a matching Accessory Peer Agent is installed or
Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 29

http://developer.android.com/reference/android/app/Service.html#onLowMemory()
http://developer.android.com/reference/android/app/Service.html#onLowMemory()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#onServiceConnectionLost(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#ERROR_FATAL
http://developer.android.com/reference/android/app/Service.html#stopSelf()
http://developer.android.com/reference/android/app/Service.html#stopSelf()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#onServiceConnectionLost(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onPeerAgentUpdated(com.samsung.android.sdk.accessory.SAPeerAgent,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#requestServiceConnection(com.samsung.android.sdk.accessory.SAPeerAgent)

Accessory Programming Guide

uninstalled on a remote Accessory Device. If a matching Accessory Peer Agent is not found when calling SAAgent.fin
dPeerAgents(), the SAAgent.onFindPeerAgentResponse () callback gets a failure code. When it becomes
available, you can get the PEER_AGENT_AVAILABLE from SAAgent.onPeerAgentUpdated() callback. Your application

can check the identity or properties of the new Accessory Peer Agent by using the APls in the SAPeerAgent object,
and decide whether to request a Service Connection with that Accessory Peer Agent.

@Override
protected void onPeerAgentUpdated(SAPeerAgent peerAgent, int result) {
if(result == PEER_AGENT_AVAILABLE) {
requestServiceConnection(peerAgent);
} else if (result == PEER_AGENT UNAVAILABLE) {
// Peer Agent no Llonger available
}

3.3.10.Authenticating Accessory Peer Agent

The SAAgent.onServiceConnectionRequested() callback can check for Accessory Peer Agent specific information
before accepting Service Connection requests. You can use the SAPeerAgent object methods for checking specific
information, such as application name or vendor ID. In addition, you can optionally authenticate the Peer Agent by
checking its key and then decide whether to accept or reject its Service Connection request.

NOTE. The authenticating Accessory Peer Agent may not work properly depending on the firmware version of
accessory device. It is recommended to upgrade accessory device firmware if possible.

@Override
protected void onServiceConnectionRequested(SAPeerAgent peerAgent) {
// Check Peer Agent’s basic info
if(peerAgent.getAccessory().getVendorId().equals("SAMSUNG ELECTRONICS")
&& peerAgent.getAccessory().getProductId().equals("SAMSUNG GEAR")){
// Authenticate Peer Agent for enhanced security
authenticatePeerAgent(peerAgent);
} else {
rejectServiceConnectionRequest(peerAgent);
}

}

@Override

protected void onAuthenticationResponse(SAPeerAgent peerAgent, SAAuthenticationToken authToken, int
code) {

// Get the certificate from context
byte[] myAppKey = getApplicationCertificate(mContext);

// Compare it to certificate received from remote peer.
if (authToken.getKey().length != myAppKey.length) {
matched = false;
} else {
for (int i = 9; i < authToken.getKey().length; i++) {
if (authToken.getKey()[i] '= myAppKey[i]) {
matched = false;
}

}
}

// 1f identical, do further work Like accept service connection request

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 30

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onFindPeerAgentsResponse(com.samsung.android.sdk.accessory.SAPeerAgent[],%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#PEER_AGENT_AVAILABLE
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onServiceConnectionRequested(com.samsung.android.sdk.accessory.SAPeerAgent)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html

Accessory Programming Guide

NOTE. Due to platform difference, it’s necessary that Gear App creates author certificate using Android keystore.
Please refer to Appendix D. Creating Gear Author Certificate Using Android Keystore. It's also necessary to sign
Android App with Android Keystore and Gear App with author certificate created from Android Keystore.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 31

Accessory Programming Guide

4.Accessory Message

4.1.Hello Message

Hello Message is a pseudo code example to show how to:

- Initialize SA.
- Create a SAMessage.

- Send and receive messages between Accessory Peer Agents more simply.

For more information about sample applications, please visit
http://developer.samsung.com/gear/develop/samples/companion

Hello Message is composed of two parts: Consumer and Provider.

NOTICE. Please note that the previous Gear Series before Gear S3 do not support Accessory Message feature. In
addition, it needs to use the legacy Service Connection if the application intends to send or receive heavy messages
since this feature is applicable to simple message delivery.

4.1.1.Consumer Application
Consumer application has the functionalities below:
- Creates a SAMessage in your subclass extending SAAgent.
- Sends a message to Service Provider.

- Receives success or failure result of sending a messge.

class HelloMessageConsumer extends SAAgent {

void onCreate() {

Create SA;

try {
Initialize SA;

} catch (Exception e) {
// Error Handling

¥

Create SAMessage(this) {
@Override

protected void onSent(SAPeerAgent peerAgent, int id) {
// Success to send a message
}

@Override

protected void onError(SAPeerAgent peerAgent, int id, int errorCode) {
// Failure to send a message

}

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 32

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://developer.samsung.com/gear/develop/samples/companion
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html

Accessory
@Override
protected void onReceive(SAPeerAgent peerAgent, byte[] message) {
// Receive a message
Parse(message);
}
}s
}

void onStart() {
// Find Peer Agent
FindPeerAgent();

}

void onFindPeerAgentResponse(SAPeerAgent peerAgent, int result) {

// Store found Peer Agent if success
if (result == PEER_AGENT_FOUND) {
Cache(peerAgent);
}
}

public int sendData(SAPeerAgent peerAgent, String value) {
// Send a message
Create WorkerThread(

try {
return SAMessage.send(peerAgent, value.getBytes());

} catch (Exception e) {
// Error Handling
return -1;

)5

4.1.2.Provider Application
Provider application has the functionalities below:
- Creates a SAMessage in your subclass extending SAAgent.

- Receives a message from Service Provider.

class HelloMessageProvider extends SAAgent {

void onCreate() {

Create SA;

try {
Initialize SA;

} catch (Exception e) {
// Error Handling

}

Create SAMessage(this) {
@Override

protected void onSent(SAPeerAgent peerAgent, int id) {
// Success to send a message

}

Copyright © Samsung Electronics, Co., Ltd. All rights reserved.

Programming Guide

Page | 33

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html

Accessory Programming Guide

@Override

protected void onError(SAPeerAgent peerAgent, int id, int errorCode) {
// Failure to send a message

}

@Override
protected void onReceive(SAPeerAgent peerAgent, byte[] message) {
// Receive a message

// Check received message
Parse(message);
// Create a worker thread and show message to user
Create WorkerThread(
Show(message);

);
3

void onStart() {
// Find Peer Agent
FindPeerAgent();

void onFindPeerAgentResponse(SAPeerAgent peerAgent, int result) {
// Store found Peer Agent if success
if (result == PEER_AGENT_FOUND) {
Cache(peerAgent);

4.2.Using the SA Class

The SA class provides the following methods:

initialize() initializes Accessory. You need to initialize Accessory before you can use it. If the device does not
support Accessory, SsdkUnsupportedException is thrown.

- getVersionCode() gets the Accessory library version number as an integer.
- getVersionName() gets the Accessory library version name as a string.

- isFeatureEnabled() checks if the Accessory feature is available on the device.

SA sa = new SA();
try {

sa.itialize(applicationContext) {

boolean isFeatureEnabled = sa.isFeatureEnabled(SA.DEVICE_ACCESSORY);
} catch (final SsdkUnsupportedException e) {

// try to handle SsdkUnsupportedException

if (e.getType() == SsdkUnsupportedException.LIBRARY_NOT_INSTALLED) {

// You should install service application first.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 34

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#initialize(android.content.Context)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#getVersionCode()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#getVersionName()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#isFeatureEnabled(int)

Accessory Programming Guide

}
} catch (Exception el) {
// Your application cannot use Accessory. Your application should work smoothly without
// using Accessory, or you may want to notify the user and close your application
// gracefully (release resources, stop Service threads, close UI thread, etc.)
return;

int versionCode = sa.getVersionCode();
String versionName = sa.getVersionName();
boolean isMessageEnabled = sa.isFeatureEnabled(SA.SERVICE_MESSAGE);

4.2.1. Using initialize()
The SA.initialize() method:

- Initializes Accessory.
- Checks if the device is a Samsung device.
- Checks if the device supports Accessory.

- Checks if Accessory libraries are installed on the device.

If Accessory fails to initialize, the SA.initialize() method throws an SsdkUnsupportedException exception. To
find out the reason for the exception, check the exception message.

void initialize(Context context) throws SsdkUnsupportedException

4.2.2. Handling SsdkUnsupportedException

If an SsdkUnsupportedException exception is shown, check the exception message type using
SsdkUnsupportedExcpetion.getType().

The following types of exception messages are defined in the SA class:

- LIBRARY_NOT_INSTALLED: The Samsung Accessory Service Framework is not installed on the device.

4.2.3. Checking the Availability of Accessory Message

The application can check if the Accessory Message feature is supported on own device with the SA.isFeatureEnab
led() method and on the remote Peer Agent with the SAPeerAgent.isFeatureEnabled(). The feature types are
defined in the SA class. The feature type is passed as a parameter when calling the SA.isFeatureEnabled() method
or calling the SAPeerAgent.isFeatureEnabled(). The method returns a Boolean value that indicates the support
for the feature on the device.

The following type and method are defined in the SA and SAPeerAgent class:

- SERVICE_MESSAGE
Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 35

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#initialize(android.content.Context)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#initialize(android.content.Context)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html#getType()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#isFeatureEnabled-int-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#isFeatureEnabled-int-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html#isFeatureEnabled-int-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#isFeatureEnabled-int-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html#isFeatureEnabled-int-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html

Accessory Programming Guide

boolean isFeatureEnabled(int type)

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 36

Accessory Programming Guide

4.3.Using Accessory Message

The following chapter describes how to use Accessory Message.

4.3.1. Declaring Broadcast Receiver

Communicating with the remote Peer Agent needs the broadcast receiver below. If it is not declared in the
AndroidManifest.xml file, any intent handled by Samsung Accessory Service Framework is not delivered to the
developer’s created application.

<application>

<receiver android:name="com.samsung.android.sdk.accessory.RegisterUponInstallReceiver">
<intent-filter>
<action android:name="com.samsung.accessory.action.REGISTER_AGENT" />
</intent-filter>
</receiver>
<receiver android:name="com.samsung.android.sdk.accessory.MessageReceiver">
<intent-filter>
<action android:name="com.samsung.accessory.action.MESSAGE_RECEIVED" />
</intent-filter>
</receiver>

</application>

Communicating with the remote Peer Agent needs the declaration of a service in the AndroidManifest.xml. This
ensures that the application is derived from the class SAAgent.

<application>
<service android:name="the class name that extends SAAgent" />
</application>
NOTE. The SAAgent class extends the Android service and handles asynchronous Accessory-related intents. Its

implementation executes all of its activities in a worker thread, which means it does not overload the developer’s
created application main thread.

4.3.2. Defining Accessory Service Profile

Communicating with remote Peer Agent needs the declaration of descriptions about Accessory Service Profile. This is
declared in a separate file in /res/xml folder in the developer’s application project. The path of the actual XML file can
be added in the application’s AndroidManifest.xml.

For example, /res/xml/<profileName>.xml:

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 37

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html

Accessory Programming Guide
<application>
<meta-data android:name="AccessoryServicesLocation" android:value="/res/xml/<profileName>.xml" />
</a;p;p;lication>

Its elements and attributes are described in the following table:

Element Attribute Description

application name The name that you want the Samsung Accessory Service Framework to advertise in
the Accessory eco-system. Usually the application's Android AppName is used. You
can implement multiple Service Providers and Service Consumers in one application.
In that case, declare multiple <serviceProfile> elements inside the <application>
element.

NOTE. This attribute allows up to 30 characters.

serviceProfile servicelmpl The subclass that extends SAAgent.

role The direction to serve an associated service to Accessory Peer Agents.

NOTE. The value must be either “provider” or “consumer”

name The name of your Service Provider or Service Consumer.
NOTE. This attribute allows up to 30 characters.

id The Service Profile ID of the Service Provider or Service Consumer.

NOTE. It is necessary to start with ‘/’. It then allows [0-9], [a-z], ‘" and /' (as
delimiter). This attribute allows up to 30 characters.

version The Service Profile specification version that your Service Provider or Service
Consumer application supports. This attribute is represented as a two-part string
with the following format: <major>.<minor>.

NOTE. The major version and minor version have a maximum value of 255.

serviceProfile transport The transports on which the Service Provider or Service Consumer is able to
supportedTransports operate. The Samsung Accessory Service Framework supports the
TRANSPORT_WIFI, TRANSPORT_BT, TRANSPORT_BLE, and TRANSPORT_USB
transport types. If your Service Provider or Service Consumer supports multiple
transport types, declare multiple <transports> elements.

NOTE. The current version of the Samsung Accessory Service Framework supports
TRANSPORT_BT and TRANSPORT_WIFI (only for Emulator). Other types will be
supported soon.

serviceProfile feature The features on which the Service Provider or Service Consumer is able to operate.
supportedFeatures The Samsung Accessory Service Framework supports the message type.

NOTE. The current version of the Samsung Accessory Service Framework supports
only message feature. Other types will be supported in the future.

Table 6: Defining Accessory Service Profile

An example of Accessory Service Profile XML:

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 38

file:///C:/SVN/document/SDK/Release/SVN/document/SDK/mySingle/AppData/Local/Microsoft/Windows/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/workspace/AppcessorySDK/doc/com/samsung/android/sdk/accessory/SAAgent.html

Accessory Programming Guide

<resources>
<application name="ProviderExample">
<serviceProfile
serviceImpl="com.samsung.accessory.example.providerServiceImpl"
role="provider"
name="ExampleService"
id="/app/example"
version="1.0">
<supportedTransports>
<transport type="TRANSPORT_BT"/>
</supportedTransports>
<supportedFeatures>
<feature type="message"/>
</supportedFeatures>
</serviceProfile>
</application>
</resources>

When the application is installed, the Samsung Accessory Service Framework automatically registers its Accessory
Peer Agents using the information specified in your Service profile XML file. Similarly, the Accessory Peer Agents are
deregistered when the application is uninstalled. An error log is dumped if the registration process fails to register
the Accessory Service Profile implementation.

4.3.3. Finding Accessory Peer Agents

Please refer to 3.3.3.

4.3.4. Creating Message Sender
Creating a SAMessage instance

The application must have a SAAgent subclass and a SAMessage instance using SAAgent subclass and the instance
must include all implemented methods. The following example shows this implementation.

SAMessage mSAMessage = new SAMessage(this) {

@Override
protected void onSent(SAPeerAgent peerAgent, int id) {
// Success to send a message

}

@Override
protected void onError(SAPeerAgent peerAgent, int id, int errorCode) {
// Failure to send a message

}

@Override
protected void onReceive(SAPeerAgent peerAgent, byte[] message) {
// Receive a message

}
%

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 39

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html

Accessory Programming Guide

Sending a Message

To send a message, the application must decide who is the desired Accessory Peer Agent.

The Accessory Peer Agent can be obtained either by calling SAAgent.findPeerAgents() or by using the connected
peer. The application must then call SAMessage.send() on the SAMessage object. SAMessage.send() will return
integer value if it has succeeded to enqueue the message to Accessory Framework.

int id = mSAMessage.send(peerAgent, message);

NOTE. SAMessage.send() and SAMessage.secureSend() methods have to be called from a worker thread. If you
need to do any heavy lifting or long latency work in this callback, spawn a separate thread. DO NOT invoke this method
in the main thread of the application.

If you want your data encrypted, call SAMessage.secureSend() instead of SAMessage.send().

Handling Success or Failure

Application is notified with the SAMessage.onSent () callback with the corresponding Accessory Peer Agent and the
ID which was returned when calling SAMessage.send() or SAMessage.secureSend() if it has succeeded on
sending a message. Otherwise, it is notified with the SAMessage.onError() callback about errors related with
Accessory Peer Agents and Samsung Accessory Service Framework. For detailed error types, see the APl reference.

@Override
protected void onSent(SAPeerAgent peerAgent, int id) {
// Success to send a message

}

@Override
protected void onError(SAPeerAgent peerAgent, int id, int errorCode) {
switch (errorCode){

case ERROR_PEER_AGENT_UNREACHABLE:
// The remote Accessory Peer Agent is not
// reachable or not alive to receive any messages.
break;
case ERROR_PEER_AGENT_NO_RESPONSE:
// The remote Accessory Peer Agent does not give any response
// within the timeout period.
break;
case ERROR_PEER_AGENT_NOT_SUPPORTED:
// The remote Accessory Peer Agent does not support message feature.
// It needs to establish legacy service connection.
break;
case ERROR_PEER_SERVICE_NOT_SUPPORTED:
// Samsung Accessory Service Framework on remote device does not support message feature.
// It needs to establish legacy service connection.
break;
case ERROR_SERVICE NOT_SUPPORTED:
// Samsung Accessory Service Framework on this device does not support message feature.
// It needs to establish legacy service connection.
break;
case ERROR_UNKNOWN :

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 40

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#send(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#send(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#secureSend(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#secureSend(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#send(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#send(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#secureSend(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#secureSend(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#send(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#secureSend(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#secureSend(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])

Programming Guide

Accessory
// The remote Accessory Peer Agent has some internal error which occurred
// on the remote device.
break;
}
}

NOTE. SAMessage.send() and SAMessage.secureSend() methods have to be called from a worker thread. If you
need to do any heavy lifting or long latency work in this callback, spawn a separate thread. DO NOT invoke this method

in the main thread of the application.

If you want your data encrypted, call SAMessage.secureSend() instead of SAMessage.send().

4.3.5. Creating Message Receiver

Creating a SAMessage instance

The application must have a SAAgent subclass and a SAMessage instance using SAAgent subclass and the instance
must include all implemented methods. The following example shows this implementation.

SAMessage mSAMessage = new SAMessage(this) {

@Override
protected void onSent(SAPeerAgent peerAgent, int id) {
// Success to send a message

}

@Override
protected void onError(SAPeerAgent peerAgent, int id, int errorCode) {

// Failure to send a message

}

@Override
protected void onReceive(SAPeerAgent peerAgent, byte[] message) {

// Receive a message

}
1

Receiving a Message

When your application receives a message from a remote Accessory Peer Agent, it is notified with the SAMessage.on
Receive() callback. If your application cannot receive any message, please check if there is a receiver filter of
““com.samsung.accessory.action.MESSAGE_RECEIVED” in the AndroidManifest.xml file.

@Override

protected void onReceive(SAPeerAgent peerAgent, byte[] message) {
// Receive a message
String str = new String(message);

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 41

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#secureSend(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#secureSend(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#send(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#send(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#secureSend(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#secureSend(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])

Accessory Programming Guide

5.Accessory File Transfer

5.1.Hello AccessoryFileTransfer

Hello Accessory File Transfer is a pseudo code example to show how to:

- Initialize Accessory File Transfer.
- Create SAFileTransfer.
- Send a file from Sender to Receiver.

For more information about sample applications, please visit
http://developer.samsung.com/gear/develop/samples/companion

Hello Accessory File Transfer is composed of two parts: Sender and Receiver.

5.1.1.Sender Application
Sender application has the functionalities below:

= Sends a file to Receiver.
class HelloFileTransferSender extends SAAgent {

void onCreate() {
Create SAft;
try {
Initialize SAft;
} catch (Exception e) {
// Error Handling
}
}

void onStart() {
// Find Peer Agent
FindPeerAgent();

}

void onFindPeerAgentResponse(SAPeerAgent peerAgent, int result) {
// Store found Peer Agent if success
if (result == PEER_AGENT_FOUND) {
Cache(peerAgent);
// Send a file to found Peer Agent
Create SAFileTransfer(EventListner);
transId = Send(peerAgent, filename);

}
class EventListener() {
void onProgressChanged(int transId, int progress) {

// Show the progress
Show(progress);

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 42

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html
http://developer.samsung.com/gear/develop/samples/companion

Accessory Programming Guide

void onTransferCompleted(int transId, String fileName, int errorCode) {
// Clean up resources if no more usage
cleanup();
}
s

5.1.2.Receiver Application
Receiver application has the functionalities below:

= Receives a file from Sender.
public class HelloFileTransferReceiver extends SAAgent {

void onCreate() {
Create SAft;
try {
Initialize SAft;
} catch (Exception e) {
// Error Handling
}
}

void onStart() {
// Find Peer Agent
FindPeerAgent();

}

void onFindPeerAgentResponse(SAPeerAgent peerAgent, int result) {
// Store found Peer Agent if success
if (result == PEER_AGENT_FOUND) {
Cache(peerAgent);
// Send a file to found Peer Agent
Create SAFileTransfer(EventListner);

}

class EventListener() {

void onTransferRequested(int transId, String fileName) {
// Receive a file from found Peer Agent
receive(transId, fileName);

3

void onProgressChanged(int transId, int progress) {
// Show the progress
Show(progress);

}

void onTransferCompleted(int transId, String fileName, int errorCode) {
// Clean up resources 1if no more usage
cleanup();

1

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 43

Accessory Programming Guide

5.2.Using the SAft Class

The SAft class provides the following methods:
- initialize() initializes Accessory File Transfer. You need to initialize Accessory File Transfer before you can
use it. If the device does not support Accessory, SsdkUnsupportedException is thrown.

- isFeatureEnabled() checks if the Accessory File Transfer feature is available on the device.

SAft saft = new SAft();

try {

saft.initialize(this) {

boolean isFeatureEnabled = saft.isFeatureEnabled(SAft.DEVICE_ACCESSORY);
} catch (final SsdkUnsupportedException e) {

// try to handle SsdRUnsupportedException

if (e.getType() == SsdkUnsupportedException.LIBRARY_NOT_INSTALLED) {

// You should install service application first
}

} catch (Exception el) {
/* Your application cannot use Accessory File Transfer
* Your application should work smoothly without using Accessory File Transfer,
* or you may want to notify the user and close your application gracefully
* (release resources, stop Service threads, close UI thread, etc.)
*/
return;

5.2.1. Using initialize()
The SAft.initialize() method:

- Initializes Accessory File Transfer.
- Checks if the device supports Accessory File Transfer.

- Checks if the Accessory libraries are installed on the device.

If Accessory fails to initialize, the SAft.initialize() method throws an SsdkUnsupportedException exception. To
find out the reason for the exception, check the exception message.

void initialize(Context context) throws SsdkUnsupportedException

5.2.2. Handling SsdkUnsupportedException

If an SsdkUnsupportedException exception is thrown, check the exception message type using
SsdkUnsupportedExcpetion.getType().

The following types of exception messages are defined in the SAft class:

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 44

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAft.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAft.html#initialize(android.content.Context)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAft.html#isFeatureEnabled(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAft.html#initialize(android.content.Context)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAft.html#initialize(android.content.Context)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html#getType()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAft.html

Accessory Programming Guide

- LIBRARY_NOT_INSTALLED: The Samsung Accessory Service Framework is not installed on the device.

5.2.3. Checking the Availability of Accessory File Transfer

Application can check if the Accessory feature is supported on the device with the SAft.isFeatureEnabled()
method. The feature types are defined in the SAft class. It is passed as a parameter when calling the SAft.isFeatur
eEnabled() method. The method returns a Boolean value that indicates the support for the feature on the device.

The flowing type is defined in the SAft class:

- DEVICE_ACCESSORY

boolean isFeatureEnabled(int type)

5.3.Using Accessory File Transfer

The user’s application does not need an existing service connection to use Accessory File Transfer. Both the sending
and receiving application needs an interface implemented to get the peer, and an interface implemented to receive
file transfer event updates (progress and completion). The sending application must know the peer to which it wants
to send the file. Then, the receiving application must create an Accessory File Transfer object in order to receive the
incoming file transfer request notifications. The sending application is usually considered a ‘file provider” and the
receiving application is considered the ‘file consumer’.

The following chapter describes how to use Accessory File Transfer

5.3.1.Creating a Sender

Setting An Event Listener

The application must have a SAAgent subclass, an implementation of the SAFileTransfer.EventListener
interface, and a SAFileTransfer instance to bind the application to Accessory File Transfer. The following example
shows this implementation.

EventListener mCallback = new EventListener() {

@Override

public void onProgressChanged(int transId, int progress) {
// Indicates the progress of transfer

}

@Override
public void onTransferCompleted(int transId, String fileName, int errorCode) {
// Indicates that transfer has been finished

}

@Override
public void onTransferRequested(int id, String fileName) {
// No use 1in case of a file sender

}

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 45

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAft.html#isFeatureEnabled(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAft.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAft.html#isFeatureEnabled(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAft.html#isFeatureEnabled(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAft.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html

Accessory Programming Guide

@Override
public void onCancelAllCompleted (int errorCode) {
// No use in case of a file receiver
}
s

SAFileTransfer mFileTransfer = new SAFileTransfer(this, mCallback);

Sending Files

To send a file, the application must know where the Accessory Peer Agent wants to send the file.

The Accessory Peer Agent can be obtained either by calling SAAgent.findPeerAgents() or by using the connected
peer. The application must then call SAFileTransfer.send() onthe SAFileTransfer object.

int tx = mFileTransfer.send(mPeerAgent, fileName);

In case that the file is external,

The file name provided must have a fully qualified path for the file. The data must be stored in a publicly-visible
location, for example, on /mnt/sdcard. A unique transaction ID is returned to the application, which the application
can retain for future reference.

In case that the file is internal,

Accessory File Transfer will convert the paths to URI using FileProvider. The application that will send a file from an
internal path should implement these changes. Otherwise, an I11egalArgumentException will occur while trying to
send files from an internal folder.

- Add the provider details in AndroidManafiest.xml for using content URI.
A. Use package name as the authority if FileProvider is the only ContentProvider used in the application.
= android:authorities="[application’s package name]"

= android:resources="[path of xml file having path information about file to be sent]"

<provider
android:name="android. support.v4.content.FileProvider"
android:authorities="com.samsung.android.sdk.accessory.example.filetransfer.sender"
android:exported="false"
android:grantUriPermissions="true" >
<meta-data
android:name="android. support.FILE_PROVIDER_PATHS"
android:resource="@xml/accessoryservices" />
</provider>

B. Use the unique string appending the unique string to package name as each authority if there are multiple
ContentProviders used in the application.

®= android:authorities="[application’s package name.unique string]"

= android:resources="[path of xml file having path information about file to be sent]"

<provider
android:name="com.samsung.android.sdk.accessory.example.filetransfer.sender.YourProviderl"
android:authorities="com.samsung.android.sdk.accessory.example.filetransfer.sender"

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 46

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#send(com.samsung.android.sdk.accessory.SAPeerAgent,%20java.lang.String)
http://developer.android.com/reference/android/support/v4/content/FileProvider.html
http://developer.android.com/reference/java/lang/IllegalArgumentException.html
http://developer.android.com/reference/android/support/v4/content/FileProvider.html
http://developer.android.com/reference/android/content/ContentProvider.html
http://developer.android.com/reference/android/content/ContentProvider.html

Accessory Programming Guide

</provider>

<provider
android:name=" com.samsung.android.sdk.accessory.example.filetransfer.sender.YourProvider2"
android:authorities="com.samsung.android.sdk.accessory.example.filetransfer.sender.xxx"

</provider>

<provider
android:name="android.support.v4.content.FileProvider"
android:authorities="com.samsung.android.sdk.accessory.example.filetransfer.sender.yyy"
android:exported="false"
android:grantUriPermissions="true" >
<meta-data
android:name="android.support.FILE_PROVIDER_PATHS"
android:resource="@xml/accessoryservices" />
</provider>

- FileProvider can only generate a context URI for files in directories that you specified beforehand. To specify a
directory, specify the storage area and path in xml using child elements of the <paths> element. The xml file
should be in the location mentioned in android:resources under the provider tag in AndroidManifest.xml
similar to what is shown above. The following is a sample xml file for paths.

<paths xmlns:android="http://schemas.androidcom/apk/res/android">

<files-path name="my_images" path="." />
<caches-path name="my_cache" path="." />
</paths>

NOTE. The application can send files from the internal storage directories: /data/data/<application package>/files/ and
/data/data/<application package>/cache/.

NOTICE. It should not be used to transfer sensitive or private information, since this method does not support any
security features. If the application would like to transfer sensitive or private information, it needs to implement the
encryption and decryption for security in its own application

Checking the Sending Progress

During the file transfer, progress updates are notified with the SAFileTransfer.EventListener.onProgressChang
ed() callback. Applications can update a progress bar based on the progress value received in the callback. When the
file transfer is completed (successfully or not), the onTransferCompleted() callback is called with the appropriate er
ror values. Applications can match the error codes with the error fields declared in the SAFileTransfer class.

Cancelling the Sending File

Applications can cancel the file transfer at any time by calling SAFileTransfer.cancel(). If a file transfer is cancelle
d, the SAFileTransfer.EventListener.onTransferCompleted() callback is called with a proper error code.

mFileTransfer.cancel(transId);

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 47

http://developer.android.com/reference/android/support/v4/content/FileProvider.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onProgressChanged(int,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onProgressChanged(int,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onProgressChanged(int,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#cancel(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onTransferCompleted(int,%20java.lang.String,%20int)

Accessory Programming Guide

EventListener mCallback = new EventListener() {

@Override
public void onTransferCompleted(int transId, String fileName, int errorCode) {

if (errorCode == SAFileTransfer.ERROR_PEER_AGENT_REJECTED) {
// Indicates that transfer has been cancelled or rejected.
} else {

}

}

Sender application can cancel all file transfer request at any time by calling SAFileTransfer.cancelAll(). If afile tr
ansfer is cancelled, the onCancelAllCompleted() is called with a proper error code.

mFileTransfer.cancelAll();
é&éntListener mCallback = new EventListener() {
@6&erride
public void onCancelAllCompleted(int errorCode) {
i%.(errorCode == SAFileTransfer.ERROR_NONE) {

// Indicates that transfer has been cancelled.
} else {

}

NOTE. SAFileTransfer.cancelAll() and SAFileTransfer.EventListener.onCancelAllCompleted() are newly
added from 2.3.0. Unless you override those methods, you can get a compilation error (unimplemented methods). It’s
recommended to add those methods to your implementation.

5.3.2.Creating a Receiver
Declaring Broadcast Receiver

Communicating with the sender needs the broadcast receiver below. This receiver is triggered when receiving a file
transfer request. If it is not added in the AndroidManifest.xml file, intents will not be delivered to the developer’s

created application.

<application>
<receiver
android:name="com.samsung.android.sdk.accessoryfiletransfer.SAFileTransferIncomingRequestReceiver">

<intent-filter>
<action android:name="com.samsung.accessory.ftconnection"/>
</intent-filter>
</receiver>

</application>

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 48

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#cancelAll()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onCancelAllCompleted(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#cancelAll()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onCancelAllCompleted(int)

Accessory Programming Guide

Setting An Event Listener

The application must have a SAAgent subclass and an implementation of the SAFileTransfer.EventListener
interface and create a SAFileTransfer instance to bind the application to Accessory File Transfer. The following
example shows this implementation.

EventListener mCallback = new EventListener() {
@Override

public void onProgressChanged(int transId, int progress)
// Indicates the progress of transfer
}

@Override

public void onTransferCompleted(int transId, String fileName, int errorCode) {
// Indicates that transfer has been finished

}

@Override

public void onTransferRequested(int id, String fileName) {
// No use in case of a file sender

}

@Override

public void onCancelAllCompleted (int errorCode) {
// No use in case of a file receiver

}

s

SAFileTransfer mFileTransfer = new SAFileTransfer(this, mCallback);

Receiving Files

The EventListener instance and the SAFileTransfer object are needed to enable the receiving application to
receive incoming file transfer requests. The Accessory File Transfer Service notifies the receiving application about
the incoming request with the SAFileTransfer.EventListener.onTransferRequested() callback.

The application can inform the user through a notification or pop-up about the incoming file transfer and then ask for
permission to accept or reject the incoming file transfer request.

The application must call SAFileTransfer.receive() on the SAFileTransfer object to receive the file. For exampl
e, file path to be stored is /storage/emulated/0/.

mFileTransfer.receive(transId, "/storage/emulated/@/RecevicedFile.ext");
In case that file is external,

The destination file path where the received file is stored must be a publicly available location and also a fully
qualified path. You can leave the parameter blank, in which case the file is stored in an external storage directory
under a generated file name, for example, ReceivedFile<timestamp>.ext. An I1legalArgumentException occurs if
an invalid file path or an invalid transaction ID is used.

In case that file is internal,

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 49

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onTransferRequested(int,%20java.lang.String)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#receive(int,%20java.lang.String)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html
http://developer.android.com/reference/java/lang/IllegalArgumentException.html

Accessory Programming Guide

For receiving file in internal storage directory, the application must implement below changes or else an
IllegalArgumentException will occur while trying to receive files from an internal directory.

- Add the provider details in AndroidManafiest.xml for using content URI.
A. Use package name as the authority if FileProvider is the only ContentProvider used in the application.
= android:authorities="[application’s package name]"

= android:resources="[path of xml file having path information about file to be received]"

<provider
android:name="android.support.v4.content.FileProvider"
android:authorities="com.samsung.android.sdk.accessory.example.filetransfer.receiver"
android:exported="false"
android:grantUriPermissions="true" >
<meta-data
android:name="android. support.FILE_PROVIDER_PATHS"
android:resource="@xml/accessoryservices" />
</provider>

B. Use the unique string appending the unique string to package name as each authority if there are multiple
ContentProviders used in the application.

= android:authorities="[application’s package name.unique string]"
= android:resources="[path of xml file having path information about file to be received]"

<provider
android:name="com.samsung.android.sdk.accessory.example.filetransfer.receiver.YourProviderl"
android:authorities="com.samsung.android.sdk.accessory.example.filetransfer.receiver"

</provider>
<provider

android:name=" com.samsung.android.sdk.accessory.example.filetransfer.receiver.YourProvider2"
android:authorities="com.samsung.android.sdk.accessory.example.filetransfer.receiver.xxx"

</provider>

<provider
android:name="android.support.v4.content.FileProvider"
android:authorities="com.samsung.android.sdk.accessory.example.filetransfer.receiver.yyy"
android:exported="false"
android:grantUriPermissions="true" >
<meta-data
android:name="android.support.FILE_PROVIDER_ PATHS"
android:resource="@xml/accessoryservices" />
</provider>

- FileProvider can only generate a context URI for files in directories that you specified beforehand. To specify a
directory, specify the storage area and path in xml using child elements of the <paths> element. The xml file
should be in the location mentioned in android:resources under the provider tag in AndroidManifest.xml
similar to what is shown above. The following is a sample xml file for paths.

<paths xmlns:android="http://schemas.androidcom/apk/res/android">

<files-path name="my_images" path="." />
<caches-path name="my_cache" path="." />
</paths>

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 50

http://developer.android.com/reference/java/lang/IllegalArgumentException.html
http://developer.android.com/reference/android/support/v4/content/FileProvider.html
http://developer.android.com/reference/android/content/ContentProvider.html
http://developer.android.com/reference/android/content/ContentProvider.html
http://developer.android.com/reference/android/support/v4/content/FileProvider.html

Accessory Programming Guide
Checking the Receiving Progress
The sender starts sending data only after SAFileTransfer.receive() is called.

During the file transfer, progress updates are notified with the SAFileTransfer.EventListener.onProgressChang
ed() callback. The application can update a progress bar based on the progress value received. When the file transfer
is completed (successfully or not), the SAFileTransfer.EventListener.onTransferCompleted() callback is called
with the requisite error code. The application can match the error code received with those defined in SAFileTrans
fer to find the exact reason for the error.

Rejecting the Receiving File

Applications can reject the file transfer receiving the incoming request with the SAFileTransfer.EventListener.o
nTransferRequested() callback by calling SAFileTransfer.reject(). If afile transfer is rejected, the
SAFileTransfer.EventListener.onTransferCompleted() is called with the
SAFileTransfer.ERROR_PEER_AGENT_REJECTED code.

mFileTransfer.reject(transld);

EventListener mCallback = new EventListener() {

@Override
public void onTransferCompleted(int transId, String fileName, int errorCode) {

if (errorCode == SAFileTransfer.ERROR_PEER_AGENT_REJECTED) {
// Indicates that transfer has been cancelled or rejected.
} else {

}

1

Cancelling the receiving File

Applications can cancel the file transfer any time by calling SAFileTransfer.cancel().

If a file transfer is cancelled, the SAFileTransfer.EventListener.onTransferCompleted() is called with the SAFi
leTransfer.ERROR_PEER_AGENT_REJECTED code.

mFileTransfer.cancel(transId);
EventListener mCallback = new EventListener() {

@Override
public void onTransferCompleted(int transId, String fileName, int errorCode) {

if (errorCode == SAFileTransfer.ERROR_PEER_AGENT_REJECTED) {
// Indicates that transfer has been cancelled or rejected.
} else {

}

%

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 51

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#receive(int,%20java.lang.String)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onProgressChanged(int,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onProgressChanged(int,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onTransferCompleted(int,%20java.lang.String,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onTransferRequested(int,%20java.lang.String)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onTransferRequested(int,%20java.lang.String)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#reject(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onTransferCompleted(int,%20java.lang.String,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#ERROR_PEER_AGENT_REJECTED
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#cancel(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onTransferCompleted(int,%20java.lang.String,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#ERROR_PEER_AGENT_REJECTED
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#ERROR_PEER_AGENT_REJECTED

Accessory Programming Guide

6.Samples

There are a few sample applications provide in order to help the developers understand the use of Accessory SDK.
These sample applications can be also downloaded in the Samsung developer site.
- Hello Accessory (WEB / NATIVE)
= Shows simple text interactions between Smart device and Remote device using Accessory SDK.
- Gallery (WEB / NATIVE)

= Shows simple image exchange interactions between Smart device and Remote device using Accessory
SDK.

- File Transfer (WEB / NATIVE)
= Shows simple file transfer between Smart device and Remote device using Accessory SDK.

- Security Enabled (WEB / NATIVE)

= Shows simple encrypted text interactions between Smart device and Remote device using secured APIs
of Accessory SDK.

- Multiplicity (WEB / NATIVE)

= Shows how to communicate a Provider application with multiple Consumer applications using Accessory
SDK.

- Weather (HYBRID-WEB+NATIVE WIDGET)

= Shows how to communicate Provider applications with Consumer Web application and Widget
application using Accessory SDK.

- Hello Message (WEB /NATIVE)

= Shows simple text interactions between Smart device and Remote device using Accessory Message of
Accessory SDK.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 52

http://developer.samsung.com/sample-app/list.do?ct=CT010100#none
http://developer.samsung.com/sample-app/view.do?v=S000000069D
http://developer.samsung.com/sample-app/view.do?v=S000000086D
http://developer.samsung.com/sample-app/view.do?v=S000000048D
http://developer.samsung.com/sample-app/view.do?v=S000000087D
http://developer.samsung.com/sample-app/view.do?v=S000000049D
http://developer.samsung.com/sample-app/view.do?v=S000000088D
http://developer.samsung.com/sample-app/view.do?v=S000000084D
http://developer.samsung.com/sample-app/view.do?v=S000000089D
http://developer.samsung.com/sample-app/view.do?v=S000000085D
http://developer.samsung.com/sample-app/view.do?v=S000000090D
http://developer.samsung.com/sample-app/view.do?v=S000000093D

Accessory Programming Guide

6.1.Hello Accessory

The Hello Accessory sample application displays simple text interactions between Smart device and Remote device
using Accessory SDK. This sample application is following a Gear companion type application and is provided in two
types according to location of provider and consumer application.

Provider (Android) and Consumer (Gear)

<§—— Initiates service connection request
Accepts a receiving service connection request—p»,

HelloAccessory [« Sends command HelloAccessory
Provider Replies to it with the current time stamp—P»| Consumer

Hello Accessory!
46:9

—— Closes service connection
Replies to closure request————P»

Figure 7: Hello Accessory - Provider (Android) and Consumer (Gear)

This type of sample application has two parts:

- Provider application

= Works in Smart device, but has no Ul.

Accepts a receiving a service connection request from remote Accessory Peer Agent in Remote device
(Gear).

Replies to a receiving command from remote Accessory Peer Agent in Remote device (Gear) with current
time stamp.

- Consumer application

= Works in Remote device (Gear) and has Ul.

Initiates service connection request and sends command to peer Accessory Agent in Smart device.
= Shows a received response to user.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 53

Accessory

Provider (Gear) and Consumer (Android)

HelloAccessory
Consumer

Programming Guide

Initiates service connection request—————p»|

eEmE0 + © 100% 0 2 3.00

HelloAccessory(C)

Connected

CONNECT
DISCONNECT
SEND

——Accepts a receiving service connection request

Service connection
established

Sends command >
——Reply it with the current time stamp

[=lgc et * @ 100% 0 2% 3:.00

HelloAccessory(C)

Send massage:
Hello Accessory! ::

Sun Jan 05 2014
03:00:31
GMT+0900 (KST)

CONNECT
DISCONNECT
SEND

Closes service connection————————P»|

—— Replies to closure request

HelloAccessory
Provider

Figure 8: Hello Accessory - Provider (Gear) and Consumer (Android)

This sample application has two parts:

- Provider application

Copyright © Samsung Electronics, Co., Ltd. All rights reserved.

Page | 54

Accessory Programming Guide

= Works in Remote device (Gear) and has Ul.
= Accepts a receiving a service connection request from remote Accessory Peer Agent in Smart device.

= Replies to a receiving command from remote Accessory Peer Agent in Smart device with current time
stamp.

- Consumer application
= Works in Smart device and has Ul.

= |nitiates service connection request and sends command to remote Accessory Peer Agent in Remote
device (Gear).

= Shows a received response to user.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 55

Accessory

6.2.Gallery

Programming Guide

Gallery sample application displays simple image exchange interactions between Smart device and Remote device
using Accessory SDK. This sample application is following a Gear companion type application and is provided in two
types according to location of provider and consumer application.

Provider (Android) and Consumer (Gear)

GalleryProvider

—— Initiates service connection request
Accepts a receiving service connection request—p»
— Sends command to fetch image list
Replies to it with list extracted from application—»;

& image.jpg

image2.jpg

< —Sends command to fetch image itself————

M image3.jpg

More...

Replies to it P

Figure 9: Gallery - Provider (Android) and Consumer (Gear)

Gallery
Consumer

This sample application has two parts:

- Provider application

= Works in Smart device and has no Ul.

= Accepts a receiving a service connection request from remote Accessory Peer Agent in Remote device

(Gear).

Copyright © Samsung Electronics, Co., Ltd.

All rights reserved.

Page | 56

Accessory

Programming Guide

= Replies to a receiving command to fetch image list from remote Accessory Peer Agent in Remote device
(Gear) with list extracted from application.

= Replies to a receiving command to fetch images from remote Accessory Peer Agent in Remote device
(Gear) with actual images after encoding it as BASE64.

- Consumer application

= Works in Remote device (Gear) and has Ul.

= |nitiates service connection request and send commands to remote Accessory Peer Agent in Smart

device.

= When receiving a response, decodes BASE64 encoded images and shows it to user.

Provider (Gear) and Consumer (Android)

Gallery
Consumer

Initiates service connection request—————P»|
— Accepts a receiving service connection request

Ready to connect

Sends command to fetch image list—————p»
— Replies to it with list extracted from application
<— Sends command to fetch image itse f—————»

Replies to it

GalleryConsumer

CONNECT

FETCH

NEXT

CLOSE

Thumbnails have
been sent

GalleryProvider

Figure 10: Gallery - Provider (Gear) and Consumer (Android)

This sample application has two parts:

- Provider application

Copyright © Samsung Electronics, Co., Ltd. All rights reserved.

Page | 57

Accessory Programming Guide

= Works in Remote device (Gear) and has Ul.
= Accepts a receiving a service connection request from remote Accessory Peer Agent in Smart device.

= Replies to a receiving command to fetch image list from remote Accessory Peer Agent in Smart device
with list extracted from Gear application.

= Replies to a receiving command to fetch images from remote Accessory Peer Agent in Smart device with
actual images after encoding it as BASE64.

- Consumer application
= Works in Smart device and has Ul.

= |nitiates service connection request and send commands to remote Accessory Peer Agent in Remote
device (Gear).

= When receiving a response, decodes BASE64 encoded images and shows it to user.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 58

Accessory Programming Guide

6.3.File Transfer

File Transfer sample application displays file exchange interactions between the Smart device and the Remote device
using Accessory File Transfer SDK. This sample application is following a Gear companion type application and is
provided in two types according to location of sender and receiver application.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 59

Accessory

Sender (Android) and Receiver (Gear)

FileTransfer
Sender

Initiates service connection request————p»|

FileTransferSender

SEND

CANCEL
CANCEL ALL|

SEEK AND CONNECT

— Accepts a receiving service connection request

Sends a file | g

Do you want to
receive file:
src.aaa?

— Accepts a receiving command to push a file

< Transferring file >

FileTransferSender

SEND

CANCEL
CANCEL ALL|

SEEK AND CONNECT

FileTransfser
Receiver

Figure 11: File Transfer - Sender (Android) and Receiver (Gear)

Copyright © Samsung Electronics, Co., Ltd. All rights reserved.

Programming Guide

Page | 60

Accessory Programming Guide

This sample application has two parts:

- Sender application
= Works in Smart device and has Ul.
= Sends files to remote Accessory Peer Agent in Remote device (Gear).
- Receiver application
= Works in Remote device (Gear) and has Ul.
= Accepts or rejects a receiving command to push file from remote Accessory Peer Agent in Smart device.

= Receiving file from remote Accessory Peer Agent in Smart device.

NOTE. Provider application does not have any file to be sent. It's necessary to push file named src.aaa into Smart
device before clicking Send button

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 61

Accessory

Sender (Gear) and Receiver (Android)

FileTransfer
Receiver

<§— Initiates service connection request
Accepts a receiving service connection request—p»

test-cert

test-cert

¢ Sends a file

Accepts a receiving command to push a file—»

Do you want to receive file: /
storage/emulated/

< Transferring file >

Receiving file : [/storage/
emulated/0/sre.aaa) QUIT?

FileTransfer
Sender

Figure 12: File Transfer - Sender (Gear) and Receiver (Android)

Copyright © Samsung Electronics, Co., Ltd. All rights reserved.

Programming Guide

Page | 62

Accessory Programming Guide

This sample application has two parts:

- Sender application

= Works in Remote device (Gear) and has Ul.

= Sends files to remote Accessory Peer Agent in Smart device.
- Receiver application

= Works in Smart device and has Ul.

= Accepts or rejects a receiving command to push file from remote Accessory Peer Agent in Remote device
(Gear).

= Receiving file from remote Accessory Peer Agent in Remote device (Gear).

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 63

Accessory

6.4.Security Enabled

Programming Guide

Security enabled sample application displays simple text interactions between Smart device and Remote device using
secured APIs of Accessory SDK. This sample application is following a Gear companion type application and is
provided in two types according to location of provider and consumer application.

Provider (Android) and Consumer (Gear)

Secured
Provider

@— Initiates service connection request

Requests authentication of Peer Agent————P»|
<— Replies to it with authenticated certificate———

) Check the certificate from Peer Agent

Secured Consumer has been
authenticated!!!

Accepts a receiving service connection request—p»
—— Sends command with encrypted data

Send massage:
Hello Accessory! ::
Sat Jan 04 2014
23:35:32
GMT+0900 (KST)

— Replies to it with the encypted current time stamp—9P>

Security Accessory!
2014.01.04 2%
11:39:08.476

Closes service connection—————P»|
«—— Replies to closure request———————

Secured
Consumer

Figure 13: Security Enabled - Provider (Android) and Consumer (Gear)

Copyright © Samsung Electronics, Co., Ltd. All rights reserved.

Page | 64

Accessory Programming Guide

This type of sample application has two parts:

- Provider application
= Works in Smart device, but has no Ul.
= Authenticates a remote Accessory Peer Agent in Remote device (Gear).

= Accepts a receiving a service connection request from remote Accessory Peer Agent in Remote device
(Gear).

= Replies to a receiving command from remote Accessory Peer Agent in Remote device (Gear) with
encrypted current time stamp.

- Consumer application
= Works in Remote device (Gear) and has Ul.

= |nitiates service connection request and sends command to peer Accessory Agent in Smart device.

= Shows a received response to user.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 65

Accessory

Provider (Gear) and Consumer (Android)

Secured
Consumer

Programming Guide

Initiates service connection request———p»|
§—— Requests authentication of Peer Agent
Replies to it with authenticated certificate——»

Check the certificate from Peer Agent C

— Accepts a receiving service connection request

Service connection
established

Sends command with encrypted data——p>
«€— Replies to it with the encypted current time stamp—

B e 20T 4 100%0 2% 545

Secured Consumer

Connected

Security Accessory!
2014.01.04 2%
11:39:08.476

CONNECT

DISCONNECT
SEND

Closes service connection————————P»|
—— Replies to closure request————————

Secured
Provider

Figure 14: Security Enabled - Provider (Gear) and Consumer (Android)

This sample application has two parts:

- Provider application

= Works in Remote device (Gear) and has Ul.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved.

Page | 66

Accessory Programming Guide

= Authenticates a remote Accessory Peer Agent in Smart device.
= Accepts a receiving a service connection request from remote Accessory Peer Agent in Smart device.

= Replies to a receiving command from remote Accessory Peer Agent in Smart device with encrypted
current time stamp.

- Consumer application
= Works in Smart device and has Ul.

= |nitiates service connection request and sends command to remote Accessory Peer Agent in Remote
device (Gear).

= Shows a received response to user.

NOTE. Due to platform difference, it’s necessary that Gear App creates author certificate using Android keystore.
Please refer to Appendix D. Creating Gear Author Certificate Using Android Keystore. It's also necessary to sign
Android App with Android Keystore and Gear App with author certificate created from Android Keystore.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 67

Accessory

6.5.Multiplicity

Multiplicity sample application shows how to communicate a Provider application with multiple Consumer

Programming Guide

applications using Accessory SDK as one of possible multiplicity combinations. This sample application is following a

Gear companion type application and is provided in two types according to location of provider and consumer

application.

Provider (Android) and Consumer (Gear)

Initiates service connection request:

Initiates service connection request

P1

P2

Disconnect P1

Fetch P1 Fetch P2

Accepts a receiving service connection request

Accepts a receiving service connection request

Service
/sample/multi1
connection
established

Sends command

Replies to it with the current time stamp

/sample/multi1
Hello Accessory! :

Sat Jan 04 2014
233716
GMT+0900 (KST)

C1

Sends command

Replies to it with the current time stamp

This type of sample application has two parts:

- Provider application

Copyright © Samsung Electronics, Co., Ltd. All rights reserved.

Cc2

Figure 15: Multiplicity - Provider (Android) and Consumer (Gear)

Page | 68

Accessory Programming Guide

= Works in Smart device, but has no Ul.
® Includes two Providers having different Accessory Service Profile.

= Accepts a receiving a service connection request from remote Accessory Peer Agents in Remote device
(Gear) independently.

= Replies to a receiving command from remote Accessory Peer Agents in Remote device (Gear)
independently.

- Consumer application
= Works in Remote device (Gear) and has Ul.

= |nitiates service connection request and sends command to peer Accessory Agents in Smart device
independently.

= Shows a received response to user independently.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 69

Accessory

Provider (Gear) and Consumer (Android)

C1

Initiates service connection request:

A

Initiates service connection request:

Accepts a receiving service connection request

Accepts a receiving service connection request

-l
Multiplicity(C)

Connected

Connected

CONNECT
DISCONNECT
SEND

Sends command

c2

\ 4

Replies to it with the current time stamp:

PR -
Multiplicity(C)

Connected

Connected

CONNECT
DISCONNECT
SEND

Sends command

Replies to it with the current time stamp:

P1

Sends command

Figure 16: Multiplicity - Provider (Gear) and Consumer (Android)

Replies to it with the current time stamp
P
Multiplicity(C)

Connected

Connected

CONNECT

DISCONNECT
SEND

Copyright © Samsung Electronics, Co., Ltd. All rights reserved.

P2

Programming Guide

Page | 70

Accessory Programming Guide

This sample application has two parts:

- Provider application
= Works in Remote device (Gear), but has Ul.
= Includes two Providers having different Accessory Service Profile.

Accepts a receiving a service connection request from remote Accessory Peer Agents in Smart device
independently.

Replies to a receiving command from remote Accessory Peer Agents in Smart device independently.
- Consumer application
= Works in Smart device and has Ul.

Initiates service connection request and sends command to peer Accessory Agents in Remote device
(Gear) independently.

= Shows a received response to user independently.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 71

Accessory Programming Guide

6.6.Weather

The Weather sample application is a companion type application that shows how multiple Provider applications can
communicate with multiple Consumer applications (WebApp and Widget) using the Accessory SDK

Provider (Android) and Consumer (Gear)

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 72

Accessory

P1 P2

« Initiates a service connection request

Programming Guide

¢ Sends "request" command to add city

Accepts a receiving service connection request

Add city

Seoul
Sydney

Please Add City -)
Delete City

Moscow
NewYork
Sydney

Send >>>>> Moscow
Delete City

Replies with weather information about selected city

11:30
Moscow

&
21°C

18°C/30°C

C1

Cc2

Select WeatherWebApp in menu

Initiates service connection request

<4—— Sends "request” command to get the weather info. of random city

Accepts a receiving service connection request

Replies with weather information about selected city

10:29
London

199C
16°C/28°C

P1 ProviderForWebApp P2 ProviderForWidget C1 WeatherWebApp €2 WeatherWidget

Figure 17: Weather - Provider (Gear) and Consumer (Android)

Copyright © Samsung Electronics, Co., Ltd. All rights reserved.

Page | 73

Accessory Programming Guide

This sample application has three parts:

- WeatherProvider
= Works in Host device and has Ul
* Includes two Providers having different Accessory Service Profiles
» Accepts a receiving service connection request from Gear device independently

*= Replies to a receiving command from Gear device independently

- WeatherWebApp
= Works in Gear device and has Ul
= |nitiates a service connection request and sends commands to Host device independently
= Shows a received response to user independently

= Shows the weather information of random city among stored cities

- WeatherWidget
= Works in Gear device and has Ul
» |nitiates a service connection request and sends commands to Host device independently
»= Shows a received response to the user independently
»= Shows the weather information of selected cities

»= Shows to user the screen to add the city

NOTE. Please refer to the link below to package a hybrid application.
https://developer.tizen.org/community/tip-tech/packaging-hybrid-application

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 74

https://developer.tizen.org/community/tip-tech/packaging-hybrid-application

Accessory

6.7.Hello Message

Programming Guide

The Hello Message sample application displays simple text interactions between Smart device and Remote device
using Accessory SDK. This sample application is following a Gear companion type application and is provided in two
types according to location of provider and consumer application.

Provider (Android) and Consumer (Gear)

HelloMessage
Provider

— Initiates findPeerAgent

Find peerAgent

end Message

Sends command

Replies to it with the current time stamp———p»>

Received message
from the [61499] :

Hello Message!
2016.09.22 2=
02:22:01.237

HelloMessage
Consumer

Figure 18: Hello Message - Provider (Android) and Consumer (Gear)

This type of sample application has two parts:

- Provider application

= Works in Smart device, but has no Ul.

= Replies to a receiving command from remote Accessory Peer Agent in Remote device (Gear) with current

time stamp.

- Consumer application

= Works in Remote device (Gear) and has Ul.

= Sends command to peer Accessory Agent in Smart device.

= Shows a received response to user.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved.

Page | 75

Accessory

Provider (Gear) and Consumer (Android)

HelloAccessory
Consumer

Programming Guide

Initiates findPeerAgent—— P>

onServiceConnected

FIND PEERAGENT
SEND

Service Provider
found!
Name:
HelloMessageProvig

Sends command D>

@¢—Reply to it with the current time stamp

CEE] %04l 100% 0 1428
HelloMessage(C)

onServiceConnected

Msg recevied from
the [59072] : Hello
Message!

FIRBPEERASERY
SEND

HelloAccessory
Provider

Figure 19: Hello Message - Provider (Gear) and Consumer (Android)

This sample application has two parts:

- Provider application

= Works in Remote device (Gear) and has Ul.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved.

Page | 76

Accessory Programming Guide

= Replies to a receiving command from remote Accessory Peer Agent in Smart device with current time
stamp.

- Consumer application
= Works in Smart device and has Ul.
= Sends command to remote Accessory Peer Agent in Remote device (Gear).

= Shows a received response to user.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 77

Accessory Programming Guide

7.Tools

The Accessory SDK provides tools for its application development.

7.1.Emulator
This is used to develop SAMSUNG GEAR applications using GEAR IDE without actual devices

Setting up the Test Environment
For preparing the Accessory test environment with GEAR IDE, download and install Samsung GEAR Manager into
your Smart device at first. After that, find Application_for Emulator.zip, which includes the necessary file in tools

folder in SDK. After extracting zipped file, you can find the following file: SAccessoryService_ Emul.apk . And then
install it on your Smart device.

adb install -r SAccessoryService Emul.apk

NOTE. Even if Samsung Accessory Service was already installed, install this file. Below figure shows the correct
installation status for emulator.

3 % .41 100% M 2:38 p.m.

SEARCH A-Z EDIT

5 sreoscssovsevee MR
Emulator
UNINSTALL FORCE STOP forSamsu...
Storage
Data usage
1.26 MB us¢ nce 5 Oct

Permissions

rac

Notifications
Content hidden / No previews ir)P-UPS

Set as default

None s¢

Battery

Ince last tu narc

Memory
MB used on average in last

Figure 20: Install Application for Emulator
Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 78

Accessory Programming Guide

After installing that file is done, reboot the Smart device and then run Emulator for Samsung Accessory application.
Setting up the connection to GEAR IDE:

1. Connect the Smart device and PC via USB.

2. Open the terminal (or the command window in Windows®).

3. Execute the command below:

adb -d forward tcp:8230 tcp:8230

Run Emulator for Samsung Accessory application in the Smart device.
Turn on Wi-Fi or Mobile Network of Smart device

In the Tizen Studio, run the Emulator Manager and create a new virtual machine.

N o v &

Run the virtual machine of GEAR IDE.

The application’s ‘Disconnected’ text is changed to ‘Connected’, showing that the connection through the SAP
server has succeeded. If the ‘Disconnected’ text does not change, restart the emulator with the hardware key
or the sdb shell command below (DO NOT use the sdb shell command reboot)

shutdown —-r now

or enter below sdb shell command (the command requires root authority).

killall sapd

NOTE. Prior to trying the connection, make sure the following are ready: Installing the Android Debug Bridge (ADB),
setting up the path of ADB into System Variables for utilizing it in command window, installing the GEAR IDE and
running the GEAR IDE.

Cleaning Up the Test Environment

For returning the Accessory test environment to one for the actual GEAR devices, uninstall the existing application for
Emulator: Samsung Accessory Service in your Smart device. Then, launch the Samsung Gear Manager.

NOTE. Failure to uninstall that application for Emulator could result for it not to work properly on communicating with
the actual GEAR devices.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 79

Accessory Programming Guide
Appendix A. Programming Tips

A.1. Using File Transfer

It’s helpful to remember the following tips when implementing file transfers:

- Accessory File Transfer Service maintains its own queue for all file sending operations. Individual applications
need not and must not maintain their own queues to control file transfer. All SAFileTransfer.send() calls are
gueued and serviced sequentially, even when they came from multiple user applications.

- There is a timeout of 10 seconds when the sending application sends the file transfer request to the receiving
application. If the receiver does not accept or reject the file transfer within that time, it is cancelled and an error
code is thrown on the sender side through the SAFileTransfer.EventListener.onTransferCompleted()
callback. This is also the case when the application forgets to register an incoming file transfer request broadcast
receiver or to call SAFileTransfer.receive().

- Accessory File Transfer Service checks whether there is enough space on the receiving device to receive the
incoming file. If not, it rejects the file transfer automatically without informing the receiving application.

- Accessory File Transfer Service checks whether there is already a file with the same name present in the location
provided. If there is, it appends a timestamp to the given file name. If no file path is provided, the file is stored in
the external storage directory under a generated file name.

- Inthe current Accessory File Transfer Service implementation, files can be transferred with or without a service
connection between user applications. This is different from the previous implementation, where a service
connection was necessary.

- Itis mandatory to implement the EventListener interface for file transfer updates.

- If you have multiple SAAgent implementations in your application, all using Accessory File Transfer, each one
must create its own SAFileTransfer object. On the receiver side, all the agents must be registered. Accessory
File Transfer SDK resolves the intended SAAgent implementation for every incoming file transfer request and
notifies it with its specific SAFileTransfer.EventListener.onTransferRequested() callback.

- There is one binding to Accessory File Transfer per application, regardless of the number of SAAgent
implementations in the application.

- SAFileTransferIncomingRequestReceiver must be declared in the receiving application’s manifest.

- Onthe receiver side, one SAAgent implementation must maintain only a single SAFileTransfer object in its
lifetime. If multiple instances are created, the app will receive the
SAFileTransfer.EventListener.onTransferRequested() callback for every registered instance during an
incoming file transfer request. A suggested failsafe is to call SAFileTransfer.close() and then set the
SAFileTransfer object to null in the onDestroy() of the SAAgent implementation.

- SAFileTransfer.close() APl should be called by the application only when the application has no use of File
Transfer Service. Once the API is called, the application won’t be able to receive or send files until it creates a
new SAFileTransfer instance. Application should make sure all the ongoing and pending requests are completed
before calling SAFileTransfer.close() else a RuntimeException exception will be thrown.

- Accessory File Transfer is using the package name as the default authority for FileProvider. If application
defines provider only for using File Transfer Content URI, it can continue to use the same. For applications with
multiple providers, they can declare their authority for File Provider with different strings like adding some extra
string in the end of package name.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 80

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#send(com.samsung.android.sdk.accessory.SAPeerAgent,%20java.lang.String)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onTransferCompleted(int,%20java.lang.String,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#receive(int,%20java.lang.String)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onTransferRequested(int,%20java.lang.String)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onTransferRequested(int,%20java.lang.String)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#close()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#close()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#close()
http://developer.android.com/reference/java/lang/RuntimeException.html
http://developer.android.com/reference/android/support/v4/content/FileProvider.html

Accessory

Programming Guide

A.2. Validating Accessory Service Profile XML

Validating the defined Accessory Service Profile lowers the chances of registration failure by wrong Accessory Service
Profile description. The Samsung Accessory Service Framework provides two kinds of validating methods: Document
Type Definition (DTD) Schema and XML Schema.

A.1.1.DTD

The following code snippet shows the Accessory Service Profile DTD file, accessoryservices.dtd.

<!DOCTYPE resources [
resources (application)>
application (serviceProfile)+>
application name CDATA #REQUIRED>

<!ELEMENT
<ELEMENT
<IATTLIST
<!ELEMENT
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<IATTLIST
<IATTLIST
<IATTLIST
<IATTLIST

serviceProfile

(supportedTransports, serviceChannel+) >

application xmlns:android CDATA #IMPLIED>

serviceProfile
serviceProfile
serviceProfile
serviceProfile
serviceProfile
serviceProfile
serviceProfile

(ANY | ONE_ACCESSORY

<!ATTLIST
<!ELEMENT
<!ATTLIST
<!ELEMENT
<!ATTLIST
<!ATTLIST

serviceProfile

xmlns:android CDATA #IMPLIED>

serviceImpl CDATA #REQUIRED>

role (provider | consumer) #REQUIRED>

name CDATA #REQUIRED>

id CDATA #REQUIRED>

version CDATA #REQUIRED>

servicelLimit

| ONE_PEERAGENT | any | one_peeragent | one_accessory) #IMPLIED>
serviceTimeout CDATA #IMPLIED>

supportedTransports (transport)+>
supportedTransports xmlns:android CDATA #IMPLIED>
transport EMPTY>

transport xmlns:android CDATA #IMPLIED>

transport type

(TRANSPORT_WIFI | TRANSPORT BT | TRANSPORT BLE | TRANSPORT USB |

transport_wifi | transport_bt | transport_ble | transport_usb) #REQUIRED>

<!ELEMENT
<IATTLIST
<IATTLIST
<IATTLIST
<IATTLIST
<!ATTLIST

1>

The following code snippet shows the Accessory Service Profile XML Schema file, accessoryservices.xsd.

serviceChannel
serviceChannel
serviceChannel
serviceChannel
serviceChannel
serviceChannel

A.1.2. XML Schema

EMPTY >

xmlns:android CDATA #IMPLIED>

id CDATA #REQUIRED>

dataRate (LOW | HIGH | low | high) #REQUIRED>

priority (LOW | MEDIUM | HIGH | low | medium | high) #REQUIRED>
reliability (ENABLE | DISABLE | enable | disable) #REQUIRED>

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"” elementFormDefault="qualified">
<xs:element name="resources">
<xs:complexType>
<XS:sequence>
<xs:element ref="application" />
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="application">
<xs:complexType>
<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:element ref="serviceProfile" />
</Xs:sequence>

Copyright © Samsung Electronics, Co., Ltd. All rights reserved.

Page | 81

Accessory

<xs:attribute name="name" type="xs:normalizedString" use="required" />
</xs:complexType>
</xs:element>
<xs:element name="serviceProfile">
<xs:complexType>
<Xs:sequence>
<xs:element ref="supportedTransports” />
<xs:element minOccurs="1" maxOccurs="unbounded" ref="serviceChannel" />
</Xs:sequence>
<xs:attribute name="serviceImpl" type="xs:normalizedString" use="required" />
<xs:attribute name="role" use="required">
<Xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="provider" />
<xs:enumeration value="consumer" />
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="name" use="required">
<xs:simpleType>
<xs:restriction base="xs:normalizedString">
<xs:minLength value="1" />
<xs:maxLength value="30" />
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="id" use="required">
<xs:simpleType>
<xs:restriction base="xs:normalizedString">
<xs:minLength value="1" />
<xs:maxLength value="30" />
<xs:pattern value="\/[a-2z0-9_]+(\/([a-z0-9_])+)*" />
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="version" use="required">
<xs:simpleType>
<xs:restriction base="xs:normalizedString">
<xs:minLength value="3" />
<xs:maxLength value="5" />
<xs:pattern value="[1-9]?[0-9][.][0-9]?[0-9]" />
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="servicelLimit" use="optional" default="any">
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="ANY" />
<xs:enumeration value="ONE_ACCESSORY" />
<xs:enumeration value="ONE_PEERAGENT" />
<xs:enumeration value="any" />
<xs:enumeration value="one_accessory" />
<xs:enumeration value="one_peeragent" />
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="serviceTimeout" use="optional" default="0">
<xs:simpleType>
<xs:restriction base="xs:integer">
<xs:minInclusive value="0" />
<xs:maxInclusive value="300" />
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>

Copyright © Samsung Electronics, Co., Ltd. All rights reserved.

Programming Guide

Page | 82

Accessory

</xs:element>

<xs:element name="supportedTransports">

<xs:complexType>

<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:element ref="transport” />

</Xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="transport">

<xs:complexType>

<xs:attribute name="type" use="required">
<Xs:simpleType>
<xs:restriction base="xs:NMTOKEN">

<XS
<XS
<Xs
<Xs
<Xs
<Xs
<Xs
<XS

:enumeration
:enumeration
:enumeration
:enumeration
:enumeration
:enumeration
:enumeration
:enumeration

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>
</xs:element>

<xs:element name="serviceChannel">

<xs:complexType>

value="TRANSPORT_WIFI" />
value="TRANSPORT_BT" />

value="TRANSPORT_BLE" />
value="TRANSPORT_USB" />
value="transport_wifi" />
value="transport_bt" />

value="transport_ble" />
value="transport_usb" />

<xs:attribute name="id" use="required">
<xs:simpleType>
<xs:restriction base="xs:integer">
<xs:minInclusive value="1" />
<xs:maxInclusive value="9999" />
</xs:restriction>
</xs:simpleType>

</xs:attribute>

<xs:attribute name="dataRate" use="required">
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">

<XS:
<XS:
<XS:
<XS:

enumeration
enumeration
enumeration
enumeration

</xs:restriction>
</xs:simpleType>

</xs:attribute>

value="LOW" />
value="HIGH" />
value="low" />
value="high" />

<xs:attribute name="priority" use="required">
<Xs:simpleType>
<xs:restriction base="xs:NMTOKEN">

<XS
<XS
<XS
<XS
<XS
<XS

:enumeration
:enumeration
:enumeration
:enumeration
:enumeration
:enumeration

</xs:restriction>
</xs:simpleType>

</xs:attribute>

value="LOW" />
value="MEDIUM" />
value="HIGH" />
value="low" />
value="medium" />
value="high" />

<xs:attribute name="reliability" use="required">
<Xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="ENABLE" />
<xs:enumeration value="DISABLE" />
<xs:enumeration value="enable" />
<xs:enumeration value="disable" />

Copyright © Samsung Electronics, Co., Ltd. All rights reserved.

Programming Guide

Page | 83

Accessory Programming Guide

</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
</xs:schema>

A.1.3.Procedure

Before validating an Accessory Service Profile description, add a reference to the DTD rules to the topmost part of
your Accessory Service Profile XML file, accessoryservices.dtd:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE resources SYSTEM "accessoryservices.dtd">
<resources>
<application name= ...
</resources>

You can also choose to add a reference to the XML Schema to the topmost part of your Accessory Service Profile XML
file, accessoryservices.xsd:

<?xml version="1.0" encoding="UTF-8"?>

<resources xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”

xsi:noNamespaceSchemalocation="accessoryservices.xsd">
<application name= ...

</resources>

Using the Eclipse IDE, on the toolbar

- Click Window > Preferences and select XML > XML files -> Validation in the left pane.

Set options No grammar specified and Missing root element to Ignore.

Check Enable markup validation.

- Click Apply and OK.

When you build your application, Eclipse validates the Accessory Service Profile XML file to check whether the XML
file follows the Samsung Accessory Service Framework DTD. You can also validate the XML any time by right-clicking
on the XML file and selecting Validate.

Note. Validating Accessory Service Profile description using XML Schema is more accurate than using DTD.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 84

Accessory Programming Guide
A.1.4.DTD for supporting Accessory Message
The following code snippet shows the Accessory Service Profile DTD file for Accessory Message.

<IDOCTYPE resources [

<IELEMENT resources (application)>

<IELEMENT application (serviceProfile)+>

<IATTLIST application name CDATA #REQUIRED>

<!IELEMENT serviceProfile (supportedTransports, serviceChannel*, supportedFeatures*) >

<!IATTLIST application xmlns:android CDATA #IMPLIED>

<!ATTLIST serviceProfile xmlns:android CDATA #IMPLIED>

<!ATTLIST serviceProfile serviceImpl CDATA #REQUIRED>

<!ATTLIST serviceProfile role (PROVIDER | CONSUMER | provider | consumer) #REQUIRED>

<!ATTLIST serviceProfile name CDATA #REQUIRED>

<IATTLIST serviceProfile id CDATA #REQUIRED>

<IATTLIST serviceProfile version CDATA #REQUIRED>

<IATTLIST serviceProfile serviceLimit (ANY | ONE_ACCESSORY | ONE_PEERAGENT | any | one_accessory |
one_peeragent) #IMPLIED>

<IATTLIST serviceProfile serviceTimeout CDATA #IMPLIED>

<!ELEMENT supportedTransports (transport)+>

<!ATTLIST supportedTransports xmlns:android CDATA #IMPLIED>

<!ELEMENT transport EMPTY>

<!ATTLIST transport xmlns:android CDATA #IMPLIED>

<IATTLIST transport type (TRANSPORT_WIFI | TRANSPORT BT | TRANSPORT BLE | TRANSPORT_USB |
transport_wifi | transport_bt | transport_ble | transport_usb) #REQUIRED>

<!ELEMENT serviceChannel EMPTY>

<!ATTLIST serviceChannel xmlns:android CDATA #IMPLIED>

<IATTLIST serviceChannel id CDATA #REQUIRED>

<!ATTLIST serviceChannel dataRate (LOW | HIGH | low | high) #REQUIRED>

<!ATTLIST serviceChannel priority (LOW | MEDIUM | HIGH | low | medium | high) #REQUIRED>

<IATTLIST serviceChannel reliability (ENABLE | DISABLE | enable | disable) #REQUIRED>

<!ELEMENT supportedFeatures (feature)+>

<!ATTLIST supportedFeatures xmlns:android CDATA #IMPLIED>

<!ELEMENT feature EMPTY>

<!ATTLIST feature xmlns:android CDATA #IMPLIED>

<IATTLIST feature type (message) #REQUIRED>

1>

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 85

Accessory Programming Guide

A.3. JAVA Reflection Construction

An Application implements a subclass of SASocket to send and receive data over an established Service Connection.
Register your SASocket implementation with SAAgent by passing the name and the derived concrete SASocket
subclass as parameters to the SAAgent constructor for Java Reflection construction.

public HelloAccessoryService() {
// HelloAccessoryService extends SAAgent
// HelloAccessoryServiceConnection extends SASocket
super(“HelloAccessoryService", HelloAccessoryServiceConnection.class);

An Application also needs to implement the SASocket subclass constructor for Java Reflection construction. The
following example illustrates the implementation.

public HelloAccessoryServiceConnection() {
// HelloAccessoryServiceConnection extends SASocket
// name of the subclass extends SASocket
super(HelloAccessoryServiceConnection.class.getName())

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 86

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html

Accessory Programming Guide

A.4. Obfuscating The Application Using ProGuard

When you build your application in release mode, you must add -keep lines in the ProGuard configuration file of your
application to prevent ProGuard from renaming your SAAgent and SASocket subclasses. ProGuard is a too
integrated into the Android build system that obfuscates the code by renaming classes and methods. It's highly
recommended that you read the ProGuard Manual for more information.

When running ProGuard as needed by the application, please take note of the following:
If you have been using Android Studio,

1. Upgrade Android Studio or Eclipse with Android Developer Tools (ADT) to latest if possible.
2. Open build.gradle file and change lines to enable option as shown below.

android {

buildTypes {
release {
minifyEnabled true
proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro’

3. Add the following lines to proguard-rules.pro to exclude Accessory SDK for ProGuard.

-keepclassmembers class com.samsung.** { *; }
-keep class com.samsung.** { *; }
-dontwarn com.samsung.**

4. If you extend SASocket, create a new java file for creating class to extend SASocket. DO NOT use inner class
to extend SASocket. To avoid modifications in the inner class, add the following line.

-keepattributes InnerClasses

5. Application needs to check these lines and its ProGuard configuration when using Accessory SDK as shown
below.

-keepclassmembers class <Application’s SASocket or SAAgent extended class>.** { *; }
-keep class <Application’s SASocket or SAAgent extended class>** { *; }

If you have been using Eclipse with Android Developer Tools (ADT)

1. Upgrade Eclipse with Android Developer Tools (ADT) to latest.
2. Open project.properties file and change lines to enable option as shown below.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 87

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://developer.android.com/tools/help/proguard.html
http://stuff.mit.edu/afs/sipb/project/android/sdk/android-sdk-linux/tools/proguard/docs/index.html#manual/introduction.html

Accessory Programming Guide

= proguard.config=${sdk.dir}/tools/proguard/proguard-android.txt:proguard-project.txt

3. Add the following lines to proguard-project.txt to exclude Accessory SDK for ProGuard.

-keepclassmembers class com.samsung.** { *; }
-keep class com.samsung.** { *; }
-dontwarn com.samsung.**

4. If you extend SASocket, create a new java file for creating class to extend SASocket. DO NOT use inner class
to extend SASocket. To avoid modifications in the inner class, add the following line.

-keepattributes InnerClasses

5. Application needs to check these lines and its ProGuard configuration when using Accessory SDK as shown
below.

-keepclassmembers class <Application’s SASocket or SAAgent extended class>.** { *; }
-keep class <Application’s SASocket or SAAgent extended class>** { *; }

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 88

Accessory Programming Guide

A.5. Running SAAgent In Sub-Process

Applications may choose to run SAAgent service implementation in a separate sub-process using android:process
attribute. This allows the service to keep on running even if the main process has been killed. The name assigned to
this attribute begins with a colon(‘:’).

<application>
<service android:name="com.samsung.android.sdk.accessory.sample" android:process=":remote” />

</application>

In such case, it is also necessary to export the BroadcastReceivers in the same sub-process to avoid creating multiple
bindings to Samsung Accessory Service Framework.

<application>

<receiver
android:name="com.samsung.android.sdk.accessory.ServiceConnectionIndicationBroadcastReceiver"
android:process=":remote" />
<intent-filter>
<action android:name="com.samsung.accessory.action.SERVICE_CONNECTION_REQUESTED"/>
</intent-filter>
</receiver>
<receiver android:name="com.samsung.android.sdk.accessory.RegisterUponInstallReceiver"
android:process=":remote" />
<intent-filter>
<action android:name="com.samsung.accessory.action.REGISTER_AGENT"/>
</intent-filter>
</receiver>

</application>

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 89

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html

Accessory Programming Guide

Appendix B. SDK Migration

B.1. 2.2.2 t0 2.3.0 or above
B.1.1. New Changes
B.1.1.1. Intent Action Changes

2.2.2 or below android.accessory.device.action.ACCESSORY_SERVICE_CONNECTION_IND
2.3.0 or above android.accessory.device.action.REGISTER_AFTER_INSTALL

2.2.2 or below com.samsung.accessory.action.SERVICE_CONNECTION_REQUESTED
2.3.0 or above com.samsung.accessory.action.REGISTER_AGENT

B.1.2. Behavioral Changes

findPeerAgents

Call in onCreate

Works as is

Call in separate thread

Works as is

Call in onCreate immediately after
application installed

Refer to B.1.2.1.

From callback thread of

acceptServiceConnection

onServiceConnectionRequested

. Works as is
requestServiceConnection | ONFindPeerAgentResponse
SAAgent
Call in separate thread Works as is
From callback thread of)
Works as is

Call in separate thread

Refer to B.1.2.2.

Do not override to automatically

send in multiple channels

Works as is
accept
From callback thread of .
. . Works as is
onServiceConnectionResponse
From callback thread of onReceive Works as is
Call from one Handler thread to send)
send . Works as is
SASocket securesend to multiple channels
ocke
Call from multiple Handler threads to .
Works as is

Call from multiple threads to send in
one channel

Refer to B.1.2.3.

close

From callback thread of onReceive

Works as is

Copyright © Samsung Electronics, Co., Ltd. All rights reserved.

Page | 90

Accessory Programming Guide

Call in separate thread v v Works as is

When large data send in progress v v Works as is

B.1.2.1. Finding Peer Agents

Application needs to handle error code (ERROR_AGENT_NOT_INITIALIZED) and wait until SAAgent is registered, and
then reattempt to call SAAgent.findPeerAgents().

class HelloAccessoryConsumer extends SAAgent {

void onCreate() {
super.onCreate();
// Can be called in onCreate, but super must be invoked first
findPeerAgents();

}

void onFindPeerAgentResponse(SAPeerAgent peerAgent, int result) {
// Cache the peer agent found if result is success
if (result == PEER_AGENT_FOUND) {
Cache(peerAgent);

}
}

void onError(SAPeerAgent peerAgent, String errorMessage, int errorCode) {
// Handle error code to call findPeerAgents API again
if (errorCode == ERROR_AGENT NOT_INITIALIZED) {
findPeerAgents();

}

B.1.2.2. Accepting Service Connection

SDK 2.2.2 expects application to accept or reject the service connection from the
SAAgent.onServiceConnectionRequested() callback. This restriction is now no longer.

class HelloAccessoryConsumer extends SAAgent {

void onServiceConnectionRequested(SAPeerAgent peerAgent) {
// Can be directly accepted here
// acceptServiceConnectionRequest(peerAgent);
// Alternatively, can be accepted in a separate thread
new WorkerThread() {
// Do your processing here

acceptServiceConnectionRequest(peerAgent);

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 91

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onServiceConnectionRequested(com.samsung.android.sdk.accessory.SAPeerAgent)

Accessory Programming Guide
B.1.2.3. Sending data

It is necessary that application uses a single Handler thread to send over a channel. Since write is blocking, this
ensures data is sent one after another. Multiple threads can be used to send over multiple channels.

class HelloAccessoryConsumer extends SAAgent {

void onServiceConnectionResponse(SAPeerAgent peerAgent, SASocket socket, int result) {
// 1f result 1is successful, cache socket for using on sending message
if (result == CONNECTION_SUCCESS) {
Cache(socket);
}
// create new handler threads for each channel
new WorkerThread(Channel id);

}

void sendDataToPeer(String message) {
// This method can be used to send data from UI thread
message = composeMessage();
WorkerThread.obtainMessage(message).sendToTarget();

}

class ServiceConnection extends SASocket {
public void onReceive(int channelld, byte[] data) {
// Create a new thread do your processing 1inside
Create WorkerThread(
Parse(data);

responseMessage = composeMessage();
WorkerThread.obtainMessage(responseMessage).sendToTarget();
)s

}

void onServiceConnectionLost(int errorCode) {
// Reset cached peer agent
ResetCache();

}

void onError(int channelld, String errorString, int error) {
// Error handling
I
}

WorkerThread extends Handler{
void handleMessage(Message msg) {
message = msg.obj;
try {
CachedSocket.Send(channel id, message);
} catch (Exception e) {
// Error handling
}

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 92

Accessory Programming Guide

B.2. Guide to Use Accessory Message in Legacy Application
B.2.1. Add Intent Action

Application needs to register additional intent action in Androidmanifest.xml as shown below to receive a message.

Intent Action Name

com.samsung.accessory.action.MESSAGE_RECEIVED

<application>

<receiver android:name="com.samsung.android.sdk.accessory.MessageReceiver">
<intent-filter>

<action android:name="com.samsung.accessory.action.MESSAGE_RECEIVED" />
</intent-filter>
</receiver>

</application>

B.2.2. Create a SAMessage Instance

Application needs to create SAMessage instance in your SAAgent subclass which can be used to call send() API, when
sending a message, and onReceive() callback, when receiving a message.

class MessageProvider extends SAAgent {

void onCreate() {
Create SA;
try {
Initialize SA;
} catch (Exception e) {
// Error Handling

}

SAMessage mSAMessage = new SAMessage(this) {

@Override

protected void onSent(SAPeerAgent peerAgent, int id) {
// Success to send a message

}

@Override

protected void onError(SAPeerAgent peerAgent, int id, int errorCode) {
// Failure to send a message
}

@Override

protected void onReceive(SAPeerAgent peerAgent, byte[] message) {
// Receive a message
}

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 93

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html

Accessory Programming Guide
s
}

void sendMessage(byte[] message){
mSAMessage.send(peerAgent, message);

B.2.3. Add the supported feature in accessoryservices.xml

To utilize Accessory Message feature in your application, you need to add the additional filed in accessoryservice.xml.
This information will be used so that Samsung Accessory Service Framework knows if your application is supporting
Accessory Message feature or not. It is also guided to update the latest DTD in A.1.4.

<resources>
<application name="ProviderExample">

<supportedTransports>
<transport type="TRANSPORT_BT"/>
</supportedTransports>
<serviceChannel
id="910"
dataRate="1low"
priority="high"
reliability="enable"/>
<supportedFeatures>
<feature type="message"/>
</supportedFeatures>

</application>
</resources>

B.2.4. How to develop one application for supporting both old and new gear(*Optional)

Accessory Message is a new feature supported from Gear S3. If your application needs to use Service Connection
based on SASocket for operating with old gear, you can develop one application to be able to support both old and
new gear.

SA.isFeatureEnabled() will return true if Samsung Accessory Service Framework on own device supports Accessory
Message and SAPeerAgent.isFeatureEnabled() will return true if Samsung Accessory Service Framework and Peer
Agent on the remote device support Accessory Message. You can use SAMessage.send() only when both
SA.isFeatureEnabled() and SAPeerAgent.isFeatureEnabled() return true as below. Otherwise, you should use
SASocket.send() to exchange data.

class MessageProvider extends SAAgent {
Create SA;
Create SAMessage;
SASocket mYourSubSASocket;

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 94

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#isFeatureEnabled-int-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#isFeatureEnabled-int-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#send-int-byte:A-

Accessory Programming Guide

SAPeerAgent peerAgent;
String message = “Hello Message!”’;

if(SA.isFeatureEnabled(SA.SERVICE_MESSAGE) && peerAgent.isFeatureEnabled(SA.SERVICE_MESSAGE) {
// Send a message without Service Connection.
SAMessage.send(peerAgent, message.getBytes());

} else {

// After establishing Service Connection, send a message using 1it.
// 1f you use SAMessage.send(), you will get onError() callback with the proper error code.

mYourSubSASocket.send(CHANNEL_ID, message.getBytes());

B.2.5. Replace with new SAAgent Subclass’s Constructor(*Optional)

If your application does not need to use Service Connection based on SASocket any more, you can remove SASocket
subclass in your application. Then you need to replace with new SAAgent Subclass’s Constructor for which it is not
necessary to use SASocket class. This will prevent any build error in your application.

Constructor for Both Legacy Service Connection and Constructor only for Accessory Message
Accessory Message
public ConsumerService() { public ConsumerService() {
super(TAG, SASOCKET_CLASS); super(TAG) ;
} }

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 95

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html

Accessory Programming Guide

B.3. Guide to Use startForeground() to upgrade for Android API 26.
B.3.1. New Changes

According to "Google's official guides", there are background execution limits in Android O. The Activity Manager will
kill background services in 5 seconds after being started by the starForegroundService(). So, you have to change the
background service to the foreground service by calling startForeground() with notification. It is only needed when
you upgrade the target SDK of your application to Android API 26. If you build under Android API 26, you don’t need
to add the codes. Check the code example below and you can change those codes to whatever your application
needs.

B.3.2. How to Changes

Note. If you don't need to keep the service in the foreground over 5 seconds, or if you build the project under
Android API 26, you can erase the codes below.

B.3.2.1. onCreate()

/**

* Example codes for Android O 0S (startForeground) *

**/

if (Build.VERSION.SDK_INT >= 26) {
NotificationManager notificationManager = null;

String channel_id = "sample_channel_01";
if(notificationManager == null) {
String channel_name = "Accessory_SDK_Sample";

notificationManager = (NotificationManager) getSystemService(Context.NOTIFICATION_SERVICE);

NotificationChannel notiChannel = new NotificationChannel(channel_id, channel_name,
NotificationManager.IMPORTANCE_LOW);

notificationManager.createNotificationChannel(notiChannel);

int notifyID = 1;
Notification notification = new Notification.Builder(this.getBaseContext(),channel_id)
.setContentTitle(TAG)
.setContentText("")
.setChannelId(channel_id)
.build();

startForeground(notifyID, notification);

B.3.2.2. onDestroy()

/***

* Example codes for Android O 0OS (stopForeground) *
***/

if (Build.VERSION.SDK_INT >= 26) {
stopForeground(true);

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 96

Accessory Programming Guide

Appendix C. Using Emulator

It's helpful to remember the following tips on using Emulator:
“Emulator for Samsung Accessory” application does not give any response form “Disconnected”.
v" Please check the following items.
A. Are you sure to reboot after all installation has been finished?
Is USB connected to the Smart device?
Is Wi-Fi or mobile network available on the Smart device?
Did you execute the command, “adb -d forward tcp:8230 tcp:8230"?
Is GEAR IDE activated?

Did you execute the command, “kxillall sapd’?

oG m m o O ®

If after doing steps A to F does not make the application work, you need to use Application Manager
to clear the data of Samsung Accessory Service. And repeat the steps from A.

Connection between Consumer and Provider application is not successful.

v" Please check the following items.
A. Does Emulator for Samsung Accessory application show “Disconnected”? If not, check the above tip.

B. Didyouadd TRANSPORT_WIFI to accessoyservices.xml?

<resources>
<application ...
<serviceProfile

<supportedTransports>
<transport type="TRANSPORT_WIFI" />

</supportedTransports>
</serviceProfile>

</application>
</resources>

C. If the application is still not working, please refer to “3. Accessory” once again.

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 97

Accessory Programming Guide

Appendix D. Creating Gear Author Certificate Using
Android Keystore

Author certificates helps in maintaining secure peer authentication between the Tizen Gear App and the Android
mobile app. The Certificate Extension SDK support creation of Tizen author certificate based on Android keystore file.
For instructions on installing this SDK, please refer to the link: Tizen Extension SDK Guide.

This section will only explain about creating author certificate using Android keystore. For a full guide on Samsung
Tizen certificates creation using this SDK, please refer to the link: Getting the Certificates.

D.1. Steps

1. After creating your own Certificate Profile, you will create author certificate from Step 2.

Select the type of certificate profile

Samsung

certificate profile for Samsung mobile(Z series),
series) and TV with Tizen platform

Certificate Profile Distributor Certificate

Author Certificate

Step 1. Select the device type.

(® Mobile / Wearable

| 7 < Previous Mext > Finish

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 98

http://developer.samsung.com/gear/develop/tech-doc/tizen-extension-sdk-guide
http://developer.samsung.com/gear/develop/getting-certificates

Accessory

Programming Guide

2. Select Create a new certificate profile to create new one. With Advanced options menu, you can check Use an
existing author certificate option to select the Android keystore. Browse and select your Android keystore file,

input correct password and click Next.

{71 Create Certificate Profile =3 =R ==

~ Device Type o Certificate Profile Auther Certificate Distributer Certificate

Step 2. The certificate profile consists of the author and distributer certificates. Te distribute your application, you must
create a certificate profile and sign the application with it

@ Create a new certificate profile

Certificate profile name

_) Select an existing certificate profile

MNext > Finish Cancel

[Create Certificate Profile =8 E=R

~ Certificate Profile o Author Certificate Distributor Certificate

Step 3-1 The author certificate provides a unique signature that is used when you sign your applications with a
certificate profile.

@ Create a new author certificate

°Ad\ranced options
Use an existing author certificate

o

author certificate
and enter your Andro

Samsung can issue a
certificate. Check the b

ou using the same RSA key as in a
id keystore or .p12 file lo

Certficate path |

Password confirm | |

() Select an existing author certificate

< Previous Next = Finish Cancel

3. Atthe Next step, a Samsung Account sign-in will be opened.

Certificate (=230

@ Please sign in to Samsung account.

Cancel

Copyright © Samsung Electronics, Co., Ltd. All rights reserved.

Page | 99

Accessory Programming Guide

ﬁ

ID

Password

+ Remember my ID

~ Show Password

Create new account

Q, Forgotten your ID or password?

Copyright @ Samsung Electronics Co., Ltd. All rights reserved.

4. After a few seconds, author certificate will be generated. The Next step is creating distributor certificate.

Step 3-3. The author certificate is complete.

Congratulations!

Your new author certificate is located in [C:/Users/sec/SamsungCertificate/TEST].
Remember to register or update your zpplication in the seller site.
It is also recommended to make a backup of the certificate and store it in a secure location.

Backup path* | Certificate backup path | | Browse

Mext you must create a distributor certificate to be able to install applications to Samsung devices.

@ < Previous

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 100

Accessory Programming Guide

5. Click Next, after a few seconds you can get the distributor certificate. Then, click Finish.

~ Certificate Profile ~ Author Certificate \,» o Distributor Certificate

Step 4-2. The distributor certificate is complete.

Warning!
You have selected to use the SDK default distributor certificate located in
[Ctizen-studioWtoolsWeertificate-generatorweertificateswdistributorwtizen-distributor-signer.p12].

‘You cannot install applications to Samsung devices with this distributor certificate. Te get a certificate that allows
application installations, click Previous and add the device DUIDs.

MNext = Finish | | Cancel

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 101

