
Copyright © Samsung Electronics, Co., Ltd. All rights reserved.

Accessory

Accessory
Programming Guide

Version 2.6.1

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 2

COPYRIGHT ..4

1. OVERVIEW ...5

1.1. BACKGROUND ... 6

1.2. FEATURES .. 6

1.3. ARCHITECTURE .. 7

2. DEVELOPMENT ENVIRONMENT... 12

2.1. PREREQUISITES ... 12

2.2. DOWNLOADING THE ACCESSORY SDK .. 12

2.3. USING THE LIBRARY .. 13

2.4. PERMISSION .. 13

2.5. TOOLS .. 13

3. ACCESSORY .. 15

3.1. HELLO ACCESSORY .. 15

3.2. USING THE SA CLASS ... 17

3.3. USING ACCESSORY .. 19

4. ACCESSORY FOR JOBSERVICE .. 31

4.1. HELLO ACCESSORY .. 31

4.2. USING THE SA CLASS ... 33

4.3. USING ACCESSORY FOR JOBSERVICE .. 35

4.4. USING INSTANCE IN OTHER CLASS .. 46

5. ACCESSORY MESSAGE ... 48

5.1. HELLO MESSAGE ... 48

5.2. USING THE SA CLASS ... 52

5.3. USING ACCESSORY MESSAGE.. 53

6. ACCESSORY FILE TRANSFER ... 59

6.1. HELLO ACCESSORYFILETRANSFER ... 59

6.2. USING THE SAFT CLASS ... 62

6.3. USING ACCESSORY FILE TRANSFER ... 63

7. SAMPLES .. 71

7.1. HELLO ACCESSORY .. 72

7.2. GALLERY .. 75

7.3. FILE TRANSFER .. 78

7.4. SECURITY ENABLED ... 83

7.5. MULTIPLICITY .. 87

7.6. WEATHER .. 91

7.7. HELLO MESSAGE ... 94

8. TOOLS .. 97

8.1. EMULATOR .. 97

APPENDIX A. PROGRAMMING TIPS .. 99

A.1. USING FILE TRANSFER ... 99

Table of Contents

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 3

A.2. VALIDATING ACCESSORY SERVICE PROFILE XML .. 100

A.3. JAVA REFLECTION CONSTRUCTION ... 105

A.4. OBFUSCATING THE APPLICATION USING PROGUARD .. 106

A.5. RUNNING SAAGENT IN SUB-PROCESS .. 108

APPENDIX B. SDK MIGRATION ... 109

B.1. 2.2.2 TO 2.3.0 OR ABOVE .. 109

B.2. GUIDE TO USE ACCESSORY MESSAGE IN LEGACY APPLICATION .. 112

B.3. GUIDE TO USE STARTFOREGROUND() TO UPGRADE FOR ANDROID API 26. .. 115

B.4. GUIDE TO UPGRADE SAAGENT FOR USING ANDROID JOBSERVICE. ... 116

APPENDIX C. USING EMULATOR ... 119

APPENDIX D. CREATING GEAR AUTHOR CERTIFICATE USING ANDROID KEYSTORE ... 120

D.1. STEPS ... 120

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 4

Copyright

Copyright © 2018 Samsung Electronics Co. Ltd. All Rights Reserved.

Though every care has been taken to ensure the accuracy of this document, Samsung Electronics Co., Ltd. cannot accept
responsibility for any errors or omissions or for any loss occurred to any person, whether legal or natural, from acting, or
refraining from action, as a result of the information contained herein. Information in this document is subject to change
at any time without obligation to notify any person of such changes.

Samsung Electronics Co. Ltd. may have patents or patent pending applications, trademarks copyrights or other
intellectual property rights covering subject matter in this document. The furnishing of this document does not give the
recipient or reader any license to these patents, trademarks copyrights or other intellectual property rights.

No part of this document may be communicated, distributed, reproduced or transmitted in any form or by any means,
electronic or mechanical or otherwise, for any purpose, without the prior written permission of Samsung Electronics Co.
Ltd.

The document is subject to revision without further notice.

All brand names and product names mentioned in this document are trademarks or registered trademarks of their
respective owners.

For more information, please visit http://developer.samsung.com/

http://developer.samsung.com/

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 5

1. Overview
Accessory allows you to develop applications on Samsung Smart Devices and Accessory Devices. You can connect
Accessory Devices to Samsung Smart Devices without worrying about connectivity issues or network protocols.

You can use Accessory to:

- Advertise and discover Accessory Services.

- Set up and close Service Connections with one or more logical Service Channels.

- Support Service Connections using a range of connectivity options.

- Configure Accessory Service Profiles and roles for Accessory Peer Agents.

- Support Accessory Message.

A glossary for the Accessory SDK is listed up in the following table.

Term Description

Accessory Service
Profile

An Accessory Service Profile defines the roles of Service Provider and Service Consumer. It also
specifies the formats for application-level protocol messages and message sequences between Service
Consumers and Service Providers. For example, the Notification Accessory Service Profile defines the
JSON schemas for messages used to send and receive notifications between Samsung Smart Devices
and compliant Accessory Devices. An Accessory Service Profile also defines message sequences
between a notification Service Consumer and a notification Service Provider.

Service Provider A Service Provider is an application with a role defined in the associated Accessory Service Profile
specification. It accepts incoming Service Connections from Service Consumers and initiates outgoing
Service Connections to Service Consumers. A Service Provider registers with the Samsung Accessory
Service Framework to advertise its services to Service Consumers on connected Accessory Devices. For
example, a notification Service Provider implemented on a Smart Device provides notifications from
that Smart Device to interested Service Consumers on connected Accessory Devices.

Service Consumer A Service Consumer is an application with a role defined in the associated Accessory Service Profile
specification. It discovers a matching Service Provider using the Capability Exchange Protocol, initiates
outgoing Service Connections with the matching Service Provider, and accepts Service Connection
requests from Service Providers. A Service Consumer uses the information or service provided by the
matching Service Provider. It has to register with the Samsung Accessory Service Framework. For
example, a notification Service Consumer implemented on an Accessory Device receives notification
information from the notification Service Provider on a connected Smart Device.

Accessory Peer Agent An Accessory Peer Agent is the main interface between the Samsung Accessory Service Framework and
the application implementing a Service Provider or Service Consumer. The Samsung Accessory Service
Framework views both Service Providers and Service Consumers as Accessory Peer Agents.

Service Connection A Service Connection represents the dialog between a Service Consumer and a Service Provider. It
includes one or more Service Channels for data exchange between a Service Consumer and a Service
Provider.

Service Channel A Service Channel is a logical data channel between a Service Consumer and a Service Provider. The
channel ID, data rate, priority, and delivery type distinguish Service Channels from each other. While a
Service Connection is a multi-lane highway between a Service Consumer and a Service Provider, the
Service Channel is an individual lane of that highway.

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 6

Accessory Message An Accessory Message is provided to send or receive a message without establishing a Service
Connection between a Service Provider and a Service Consumer. Both Service Provider and Service
Consumer don’t have to worry about the Service Connection and Service Channel. They only have to
send a message to the desired Accessory Peer Agent.

Table 1: Glossary

1.1. Background

The Accessory eco-system consists of one or more Samsung Smart Devices and Accessory Devices that support the
Samsung Accessory Protocol:

- Smart Devices:

Samsung smart phone and tablet devices.

Later releases may include other devices, such as Samsung Smart TVs, cameras, and laptops. Compliant Smart
Devices support the Samsung Accessory Protocol and usually include built-in support for popular Accessory
Service Profiles.

- Accessory Devices:

Auxiliary devices that connect to Smart Devices.

Compliant Accessory Devices support the Samsung Accessory Protocol and can interact with compliant Smart
Devices using a range of connectivity options.

The following figure shows the roles in the Accessory eco-system.

Figure 1: Accessory eco-system

Samsung Smart Devices can support one or more Accessory Services using a manager application with the Samsung
Accessory Service Framework such as Samsung GEAR Manager. The Smart Devices and Accessory Devices described
in this document have the Samsung Accessory Service Framework preloaded.

1.2. Features

Samsung works with domain experts within and outside Samsung to define Accessory Service Profiles. The Accessory
Service Profiles define the application-level state machine and application-level protocol to implement domain-

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 7

specific functionalities. For example, the Notification Accessory Service Profile defines an application-level protocol to
convey phone notifications to the connected Accessory Devices.

The Accessory provides the following features:

- Accessory Peer Agent

Getting the list of Peer Devices.

Getting the list of services offered by Peer Devices.

Identifying the available services between Peer Devices.

- Service Connection

Creating and storing the Service Connection between Peer Devices.

Initiating a Service Connection request.

Processing Service Connection requests from Peer Devices to provide or consume a service.

Closing a Service Connection.

- Accessory Message

Sending a message to a known peer device without Service Connection.

Receiving a message from a known peer device without Service Connection.

Acquiring the success acknowledgement or proper error codes in case of a failure.

The Accessory File Transfer uses the File Transfer Service to transfer files between devices. The file is transferred on a
separate service connection.

The Accessory File Transfer provides the following features:

- Sends files to a known peer device.

- Queues file transfer requests from multiple applications.

- Receives incoming file transfer request notifications.

- Receives file transfer progress and completion updates.

- Receives proper error codes in case of a file transfer failure.

- Cancels an ongoing or scheduled file transfer.

1.3. Architecture

Applications such as Calendar Provider and Camera Consumer use Accessory as a facade. Accessory API
communicates with the Samsung Accessory Service Framework that is pre-loaded on Samsung Smart Devices. The
Samsung Accessory Service Framework is built on top of Android stacks of connectivity methods such as Wi-Fi,
Bluetooth, and USB.

The following figure shows the architecture of Accessory.

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 8

LINUX KERNEL

HAL

ANDROID FRAMEWORK

SAMSUNG ACCESSORY SERVICE FRAMEWORK

ACCESSORY LIBRARY

APPLICATIONS
SERVICE PROVIDERS
SERVICE CONSUMERS

MANAGERS
(SERVICE, ACCESSORY,
SECURITY, NETWORK)

Figure 2: Accessory Architecture

Accessory Peer Agents like Service Providers and Service Consumers handle concurrent instances. A Service Provider
can accept incoming Service Connections from multiple Service Consumers with the same Accessory Service Profile
(e.g., the notification service). Similarly, a Service Consumer can accept incoming Service Connections from multiple
Service Providers with the same Service Profile.

Every accepted Service Connection request results in the creation of a SASocket object, which represents the dialog
between a Service Provider and a Service Consumer. The Samsung Accessory Service Framework establishes one or
more Service Channels with the QoS parameters defined by the Accessory Service Profile. The SASocket object
encapsulates these Service Channels.

The following figure shows the state machine of an Accessory Peer Agent with a remote Accessory Peer Agent. If
there is more than one remote Accessory Peer Agent, the Accessory Peer Agent can have different states with
different remote Accessory Peer Agents. For example, some remote Accessory Peer Agents can be in a connected
state, while others are in a registered (disconnected) state.

REGISTERED

CONNECTINGCONNECTED

Automatically unregistered
upon uninstallation

Automatically registered
upon installation

DISCONNECTED

Reject incoming service connection
request/
Accept incoming service connection
request w/error

Rejected outgoing service
connection request/
Accepted outgoing service
connection request w/error

Request outgoing service
connection

Accepted outgoing service connection request

Close service connection/
Service connection is lost

Accept incoming service
connection request

UNREGISTERED

Figure 3: State Machine of Accessory Peer Agent

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 9

The figure illustrates the following states:

- A Service Provider or Service Consumer application automatically registers with the Samsung Accessory Service
Framework upon installation and enters a “REGISTERED” state. Similarly, the application automatically
deregisters upon uninstallation and goes to an “UNREGISTERED” state.

- The Accessory Peer Agent enters a “CONNECTING” state when it initiates an outgoing Service Connection with a
matching remote Accessory Peer Agent with the same Accessory Service Profile and a complementary
Provider/Consumer relationship.

- The Samsung Accessory Service Framework establishes a Service Connection if a remote Accessory Peer Agent
accepts a Service Connection request. The Accessory Peer Agent enters a “CONNECTED” state on success. If the
remote Accessory Peer Agent rejects a Service Connection request or if there is a failure, the Accessory Peer
Agent goes back to the “DISCONNECTED” state.

- When a Service Connection request from a remote Accessory Peer Agent is received, the Service Provider or
Service Consumer application is notified and the application accepts or rejects the incoming Service Connection
request. If the application accepts the request, and the Service Connection has been successfully established,
the Accessory Peer Agent enters the “CONNECTED” state. Otherwise, it remains in the “REGISTERED” state.

The following figure shows the sequence flow of the Accessory Peer Agent.

SERVICE
CONSUMER

SAMSUNG
ACCESSORY

SERVICE
FRAMEWORK

REGISTERS SERVICE

QUERIES SERVICE PROVIDER

SERVICE
PROVIDER

REGISTERS SERVICE

RETURNS SERVICE PROVIDER OF INTEREST

ESTABLISH SERVICE CONNECTION

INDICATES REQUEST

ACCEPTS REQUEST

INDICATES SERVICE CONNECTION
 ESTABLISHMENT

INDICATES SERVICE CONNECTION
 ESTABLISHMENT

DATA EXCHANGE DATA EXCHAGE

CLOSE SERVICE CONNECTION

INDICATES SERVICE CONNECTION
 CLOSURE

INDICATES SERVICE CONNECTION
 CLOSURE

Figure 4: Sequence flow of Accessory Peer Agent

The above figure illustrates the following flow of Accessory Peer Agent:

The Service Provider and Service Consumer applications register their service capabilities with the Samsung Accessor

y Service Framework. The Samsung Accessory Service Framework advertises and exchanges the capabilities of the reg

istered Service Providers and Service Consumers.

The Service Consumer looks for Service Providers of interest, and queries the Samsung Accessory Service Framework,

 which in turn queries the services offered by connected Accessory Devices.

The Service Consumer attempts to establish a Service Connection with the Service Provider. A Service Provider can al

so try to establish Service Connections with Service Consumers.

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 10

The Service Provider decides to accept or reject the Service Connection request. If the Service Provider attempts to e

stablish a connection, the Service Consumer decides to accept or reject the Service Connection request.

The Service Connection is established once all the Service Channels defined by the associated Accessory Service Profil

e are created. The Service Consumer and Service Provider use the established Service Connection to read and write d

ata following the associated Accessory Service Profile specification on the Service Channels.

Its interfaces and classes are described in the following table.

Interface / Class Description

SA Initializes Accessory.

SAAgent Represents an Accessory Peer Agent. Both Service Provider and Service Consumer
implementations are expected to extend this class for each Accessory Service Profile instance
they implement. This class exposes request methods creating outgoing Service Connections
with matching remote Accessory Peer Agents. In case Accessory Peer Agent sends an
outgoing Service Connection request, your application is notified when the request result
becomes available (with Service Connection establishment, a rejection by the remote
Accessory Peer Agent, or due to a failure). Remote Accessory Peer Agents can also initiate
Service Connection requests with Accessory Peer Agent.

The application is expected to implement the method handling for incoming Service
Connection requests and decide to accept or reject incoming Service Connection requests
(trigger UI activities if needed). If a Service Connection is successfully established, both
Accessory Peer Agents (Service Provider and Service Consumer at both ends of the Service
Connection) are notified with a callback with an instance of the SASocket object passed by the
Samsung Accessory Service Framework.

SAAgentV2 Represents an Accessory Peer Agent. This class has same role with SAAgent, but it doesn’t
inherit Android Service. It can be used for applications which want to support Android
JobService in Android O OS or above. It is called by SAJobService or SAService when they
receive asynchronous Accessory related intents from remote Accessory Peer Agents.

 SAAgentV2.RequestAgentCallback Called after requesting SAAgentV2 instance is completed.

SASocket Represents a Service Connection between a Service Provider and a Service Consumer. This
class handles Service Connection related events. Both the Service Consumer and Service
Provider implementations extend this class to send and receive data on established Service
Channels according to the Accessory Service Profile specification.

SAMessage Represents an instance for a Message Service between a Service Provider and a Service
Consumer. Both the Service Consumer and Service Provider implementations extend this
class to send and receive a message without established Service Channels by both
applications.

SAPeerAgent Represents a remote Accessory Peer Agent. This is a passive entity that encapsulates the
information of the remote Accessory Peer Agent. The remote Accessory Peer Agent includes
information such as the version of the Accessory Service Profile specification that the
Accessory Peer Agent implements or follows, the application name, and the Accessory
Device.

SAPeerAccessory Represents a remote Accessory Device. It is a component of SAPeerAgent. SAPeerAccessory is a
passive entity encapsulating the information of an Accessory Device. It includes information
such as the vendor ID, product ID, device name, and address.

SAAuthenticationToken Stores the type of authentication (Currently, it only supports X.509 certificate), and the key
corresponding to the authentication type.

NOTE. The Authentication may not be working properly depending on the firmware version
of accessory device. It is recommended to upgrade accessory device firmware if possible.

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.RequestAgentCallback.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAccessory.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAccessory.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAuthenticationToken.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 11

Table 2: Accessory Interfaces and classes

Interface / Class Description

SAft Initializes Accessory File Transfer.

SAFileTransfer Provides the file transfer methods. Sending and receiving applications need to use the
Accessory File Transfer class. Each SAAgent implementation can make their own
SAFileTransfer object and call each method on it. This class also registers the SAAgent
implementation using Accessory File Transfer and the SAFileTransfer.EventListener
implementation where file transfer updates are notified.

SAFileTransfer.EventListener Listens to file transfer update notifications.

Table 3: Accessory File Transfer Interfaces and classes

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAft.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 12

2. Development Environment
To develop applications with the Accessory SDK, check prerequisites for the SDK first and download the SDK.

2.1. Prerequisites

Before downloading the Accessory SDK and starting to develop an application, refer to the following information.

Android Version

Android 4.3 (API 18) or above

Available Devices

Android 4.3 or above devices

Limitations

Samsung Accessory Service Framework should be installed on the device before launching an application.

2.2. Downloading the Accessory SDK

The Accessory SDK can be downloaded in the Samsung developer site. If the downloaded SDK is unzipped, you can
check the following content for the application development.

Folder in SDK Description

Docs API Reference with Javadoc

Programming guide

Libs accessory-v2.6.1.jar

Provides Samsung Accessory SDK Library

sdk-v1.0.0.jar

Provides Samsung SDK Library

Samples Samples(Native)

Shows interactions between Smart device and Remote device(Native Application) using Accessory SDK

Samples(Web)

Shows interactions between Smart device and Remote device(Web Application) using Accessory SDK

Tools Application for Emulator

Helps to develop SAMSUNG GEAR application using GEAR IDE without actual devices

NOTE. The android-support-v4 Library is necessary for using Accessory File Transfer.

Table 4: SDK content

https://developer.samsung.com/galaxy/accessory

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 13

Emulator APK

This is used to develop SAMSUNG GEAR application using GEAR IDE without actual devices.

2.3. Using the Library

After adding the Accessory library under libs folder in your created application project, import the package in your
code as below:

import com.samsung.android.sdk.accessory.*;

When using the Samsung Accessory File Transfer feature, import the necessary packages in your code as shown be-
low:

import com.samsung.android.sdk.accessoryfiletransfer.*;

import com.samsung.android.sdk.accessoryfiletransfer.SAFileTransfer.*;

2.4. Permission

To use Accessory, it needs the permission below. If it is not added in the AndroidManifest.xml file, the initialization
will fail with SecurityException.

<uses-permission
android:name="com.samsung.android.providers.context.permission.WRITE_USE_APP_FEATURE_SURVEY" />

If you don’t add the permission,

- For Samsung device,

 Android 4.4.2 (KitKat) and above: SecurityException is thrown and your application won’t work.

 Prior to Android 4.4.2 (KitKat): No exception and the application will work properly.

- For other companies,

No exception and the application will work properly.

The following permissions have to be specified in the AndroidManifest.xml file to use Samsung Accessory Service:

<uses-permission android:name="android.permission.BLUETOOTH" />
<uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />
<uses-permission android:name="com.samsung.accessory.permission.ACCESSORY_FRAMEWORK" />

2.5. Tools

The Accessory SDK provides tools for its application development.

http://developer.android.com/reference/java/lang/SecurityException.html
http://developer.android.com/reference/java/lang/SecurityException.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 14

Emulator

This is used to develop SAMSUNG GEAR applications using GEAR IDE without actual devices.

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 15

3. Accessory

3.1. Hello Accessory

Hello Accessory is a pseudo code example to show how to:

- Initialize Accessory.

- Connect with the remote Accessory Peer Agent.

- Send and receive JSON messages between Accessory Peer Agents.

For more information about sample applications, please visit
http://developer.samsung.com/gear/develop/samples/companion

Hello Accessory is composed of two parts: Consumer and Provider.

3.1.1.Consumer Application

Consumer application has the functionalities below

Initiates service connection request and sends command to Service Provider.

Shows a received response to user.

class HelloAccessoryConsumer extends SAAgent {

...

 void onCreate() {

 Create SA;

 try {

 Initialize SA;

 } catch (Exception e) {

 // Error Handling

 }

 }

 void onStart() {

 // Find Peer Agent

 FindPeerAgent();

 }

 void onFindPeerAgentsResponse(SAPeerAgent[] peerAgents, int result) {

 // Store found Peer Agent if success

 if (result == PEER_AGENT_FOUND) {

 for(SAPeerAgent peerAgent : peerAgents) {

Cache(peerAgent);

 RequestServiceConnection(peerAgent);

 }

 }

 }

 void onServiceConnectionResponse(SAPeerAgent peerAgent, SASocket socket, int result) {

 // if result is successful, cache socket for using on sending message

http://developer.samsung.com/gear/develop/samples/companion

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 16

 Cache(socket);

 Create WorkerThread(

 try {

message = composeMessage();

 Send(channel id, message);

 } catch (Exception e) {

 // Error handling

 }

);

 }

 class ServiceConnection extends SASocket {

 public void onReceive(int channelId, byte[] data) {

 // Check received data

 Parse(data);

 // Create a worker thread and show message to user

 Create WorkerThread(

 Show(message);

);

 }

 void onServiceConnectionLost(int errorCode) {

 // Reset cached peer agent and close service connection

 ResetCache();

 Close();

 }

 void onError(int channelId, String errorString, int error) {

 // Error handling

 }

 }

...

}

3.1.2.Provider Application

Provider application has the functionalities below

Accepts a received service connection request from Service Consumer.

Replies to a received command from Service Consumer with current time stamp.

class HelloAccessoryProvider extends SAAgent {

...

 void onCreate() {

 Create SA;

 try {

 Initialize SA;

 } catch (Exception e) {

 // Error Handling

 }

 }

 void onStart() {

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 17

 // Find Peer Agent

 FindPeerAgent();

 }

 void onFindPeerAgentsResponse(SAPeerAgent[] peerAgents, int result) {

 // Store found Peer Agent if success

 if (result == PEER_AGENT_FOUND) {

for(SAPeerAgent peerAgent : peerAgents)

 Cache(peerAgent);

 }

 }

 void onServiceConnectionRequested(SAPeerAgent peerAgent) {

 // Received service connection request from remote, decide whether to accept or to reject.

 Accept(peerAgent);

 }

 void onServiceConnectionResponse(SAPeerAgent peerAgent, SASocket socket, int result) {

 // if result is successful, cache socket for using on sending message

 Cache(socket);

}

 class ServiceConnection extends SASocket {

 void onReceive(int channelId, byte[] data) {

 // Check received data

 Parse(data);

 // Create a worker thread and send message to Consumer

 Create WorkerThread(

 message = composeMessage();

 CachedSocket.Send(channel id, message);

);

 }

 void onServiceConnectionLost(int errorCode) {

 // Reset cached peer agent and close service connection

 ResetCache();

 Close();

 }

 void onError(int channelId, String errorString, int error) {

 // Error handling

 }

 }

...

}

3.2. Using the SA Class

The SA class provides the following methods:

- initialize() initializes Accessory. You need to initialize Accessory before you can use it. If the device does not
support Accessory, SsdkUnsupportedException is thrown.

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#initialize(android.content.Context)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 18

- getVersionCode() gets the Accessory library version number as an integer.

- getVersionName() gets the Accessory library version name as a string.

- isFeatureEnabled() checks if the Accessory feature is available on the device.

SA sa = new SA();

try {

 sa.itialize(applicationContext) {

 boolean isFeatureEnabled = sa.isFeatureEnabled(SA.DEVICE_ACCESSORY);

} catch (final SsdkUnsupportedException e) {

// try to handle SsdkUnsupportedException

if (e.getType() == SsdkUnsupportedException.LIBRARY_NOT_INSTALLED) {

 // You should install service application first.

}

 } catch (Exception e1) {

 // Your application cannot use Accessory. Your application should work smoothly without

 // using Accessory, or you may want to notify the user and close your application

 // gracefully (release resources, stop Service threads, close UI thread, etc.)

return;

}

int versionCode = sa.getVersionCode();

String versionName = sa.getVersionName();

3.2.1.Using initialize()

The SA.initialize() method:

- Initializes Accessory.

- Checks if the device is a Samsung device.

- Checks if the device supports Accessory.

- Checks if Accessory libraries are installed on the device.

If Accessory fails to initialize, the SA.initialize() method throws an SsdkUnsupportedException exception. To
find out the reason for the exception, check the exception message.

void initialize(Context context) throws SsdkUnsupportedException

3.2.2.Handling SsdkUnsupportedException

If an SsdkUnsupportedException exception is shown, check the exception message type using
SsdkUnsupportedExcpetion.getType().

The following types of exception messages are defined in the SA class:

- LIBRARY_NOT_INSTALLED: The Samsung Accessory Service Framework is not installed on the device.

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#getVersionCode()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#getVersionName()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#isFeatureEnabled(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#initialize(android.content.Context)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#initialize(android.content.Context)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html#getType()

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 19

3.2.3.Checking the Availability of Accessory

The application can check if the Accessory feature is supported on the device with the SA.isFeatureEnabled()
method. The feature types are defined in the SA class. The feature type is passed as a parameter when calling the SA.
isFeatureEnabled() method. The method returns a Boolean value that indicates the support for the feature on the
device.

The following type is defined in the SA class:

- DEVICE_ACCESSORY

boolean isFeatureEnabled(int type)

3.3. Using Accessory

The following chapter describes how to use Accessory.

3.3.1.Declaring in Android Manifest

Communicating with the remote Peer Agent needs the broadcast receiver below. If it is not added in the
AndroidManifest.xml file, any intent handled by Samsung Accessory Service Framework is not delivered to the
developer’s created application.

<application>

...

<receiver
android:name="com.samsung.android.sdk.accessory.ServiceConnectionIndicationBroadcastReceiver">

<intent-filter>

<action android:name="com.samsung.accessory.action.SERVICE_CONNECTION_REQUESTED" />

</intent-filter>

</receiver>

<receiver android:name="com.samsung.android.sdk.accessory.RegisterUponInstallReceiver">

<intent-filter>

<action android:name="com.samsung.accessory.action.REGISTER_AGENT" />

</intent-filter>

</receiver>

...

</application>

Communicating with the remote Peer Agent needs the declaration of a service in the AndroidManifest.xml. This
ensures that the application is derived from the class SAAgent.

<application>

NOTE. Name of actions are changed from 2.3.0. The old actions are not anymore supported in the latest Accessory
SDK.

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#isFeatureEnabled(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#isFeatureEnabled(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#isFeatureEnabled(int)
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#DEVICE_ACCESSORY
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 20

...

<service android:name="the class name that extends SAAgent" />

...

</application>

3.3.2.Defining Accessory Service Profile

Communicating with remote Peer Agent needs the declaration of descriptions about Accessory Service Profile. This is
declared in a separate file in /res/xml folder in the developer’s application project. The path of the actual XML file can
be added in the application’s AndroidManifest.xml.

For example, /res/xml/<profileName>.xml:

<application>

 ...

<meta-data android:name="AccessoryServicesLocation" android:value="/res/xml/<profileName>.xml" />

...

</application>

Its elements and attributes are described in the following table.

Element Attribute Description

application name The name that you want the Samsung Accessory Service Framework to advertise in
the Accessory eco-system. Usually the application's Android AppName is used. You
can implement multiple Service Providers and Service Consumers in one application.
In that case, declare multiple <serviceProfile> elements inside the <application>
element.

NOTE. This attribute allows up to 30 characters.

serviceProfile serviceImpl The subclass that extends SAAgent.

role The direction to serve an associated service to Accessory Peer Agents.

NOTE. The value must be either “provider” or “consumer”

name The name of your Service Provider or Service Consumer.

NOTE. This attribute allows up to 30 characters.

id The Service Profile ID of the Service Provider or Service Consumer.

NOTE. It is necessary to start with ‘/’. It then allows [0-9], [a-z], ‘_’ and ‘/’ (as
delimiter). This attribute allows up to 30 characters.

version The Service Profile specification version that your Service Provider or Service
Consumer application supports. This attribute is represented as a two-part string
with the following format: <major>.<minor>.

NOTE. The major version and minor version have a maximum value of 255.

NOTE. The SAAgent class extends the Android service and handles asynchronous Accessory-related intents. Its
implementation executes all of its activities in a worker thread, which means it does not overload the developer’s
created application main thread.

file:///C:/SVN/document/SDK/Release/SVN/document/SDK/mySingle/AppData/Local/Microsoft/Windows/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/workspace/AppcessorySDK/doc/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 21

serviceLimit* The number of Accessory Peer Agents that you want to connect with concurrently. If
an Accessory Peer Agent requests a Service Connection with your application after
you have reached the limit, the Samsung Accessory Service Framework rejects the
Service Connection request. The attribute can be one of the following values:

one_peeragent

: Supports only one Accessory Peer Agent

one_accessory

: Supports only one Accessory Device

: Can have Service Connections to multiple Accessory Peer Agents on an
Accessory Device

any

: Supports multiple Accessory Peer Agents on multiple Accessory Devices

NOTE. If you do not set the value, “any” is applied by default.

serviceTimeout* The timeout in seconds for handling incoming Service Connection requests. This
attribute is optional. If you do not set the value, the default timeout is applied. Use
the default timeout unless your application needs more time to make a decision to
accept or reject incoming Service Connection requests. If it is needed, e.g., in cases
when it needs to connect to a cloud server, show a UI prompting the user to either
accept or reject the request. On the other hand, if it needs to do authentication, set
the attribute value for the timeout of the decision. If the timeout has exceeded, the
requesting Accessory Peer Agent gets the response that Service Connection failed
because your application did not respond.

NOTE. This attribute allows up to 300 seconds.

serviceProfile

supportedTransports

transport The transports on which the Service Provider or Service Consumer is able to
operate. The Samsung Accessory Service Framework supports the
TRANSPORT_WIFI, TRANSPORT_BT, TRANSPORT_BLE, and TRANSPORT_USB
transport types. If your Service Provider or Service Consumer supports multiple
transport types, declare multiple <transports> elements.

NOTE. The current version of the Samsung Accessory Service Framework supports
TRANSPORT_BT and TRANSPORT_WIFI (only for Emulator). Other types will be
supported soon.

serviceChannel dataRate The throughput at which data traffic originated from the Accessory Agent.

NOTE. The value must be either “low” or “high”.

priority The basis on which the application prioritizes transmissions of messages to
Accessory Peer Agent.

NOTE. The value must be either “low”, “medium”, or “high”.

reliability The basis on which the application can have a reliable transfer or not. In case of a
packet drop, a reliable transfer re-transmits the packet but also creates additional
overhead.

NOTE. The value must be either “enable” or “disable”.

NOTE. Optional attributes are denoted with an asterisk (*).

Table 5: Defining Accessory Service Profile

An example of Accessory Service Profile XML:

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 22

<resources>
 <application name="ProviderExample">
 <serviceProfile
 serviceImpl="com.samsung.accessory.example.providerServiceImpl"
 role="provider"
 name="ExampleService"
 id="/app/example"
 version="1.0"
 serviceLimit="any"
 serviceTimeout="10">
 <supportedTransports>
 <transport type="TRANSPORT_BT"/>
 </supportedTransports>
 <serviceChannel
 id="910"
 dataRate="low"
 priority="high"
 reliability="enable"/>
 </serviceProfile>
 </application>
</resources>

When the application is installed, the Samsung Accessory Service Framework automatically registers its Accessory
Peer Agents using the information specified in your Service profile XML file. Similarly, the Accessory Peer Agents are
deregistered when the application is uninstalled. An error log is dumped if the registration process fails to register
the Accessory Service Profile implementation. To define the Accessory Service Profile, refer to A.2.

3.3.3.Finding Accessory Peer Agents

Service Provider or Service Consumer application can search for matching Accessory Peer Agents by calling the SAAge
nt.findPeerAgents() method. Matching Accessory Peer Agents have the same Accessory Service Profile, i.e.,
Notification Service or Weather Service, and have a complementary provider or consumer relationship with the
calling Accessory Peer Agent. Accessory Peer Agents with different Accessory Service Profiles for Service Providers or
Service Consumers do not “match” and cannot be connected with each other. If two Accessory Peer Agents have the
same Accessory Service Profile with different versions, however, they are still considered to “match”. For example,
Notification Service Consumer that implements the Notification Service Profile version 2.0 and a Notification Service
Provider that implements the Notification Service Profile version 1.0 “match”.

The application searches for matching Peer Agents by calling SAAgent.findPeerAgents(). If matching Peer Agents
are found, it is notified by the function called SAAgent.onFindPeerAgentsResponse(). If a matching Peer Agent is
not found, it is notified with the same callback. The result will have a null Peer Agent and the reason why there’s no
match found.

@Override
protected void onFindPeerAgentsResponse(SAPeerAgent peerAgents[], int result) {
 ...
 switch(result) {
 case PEER_AGENT_FOUND:
 // Peer Agent is found
 ...
 break;
 case FINDPEER_DEVICE_NOT_CONNECTED:
 // Peer Agents are not found, no accessory device connected
 ...
 break;

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onFindPeerAgentsResponse(com.samsung.android.sdk.accessory.SAPeerAgent[],%20int)

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 23

 case FINDPEER_SERVICE_NOT_FOUND:
 // No matching service on connected accessory
 ...
 break;
 ...
 }
}

3.3.4.Setting up Service Connection

If the application wants to establish a Service Connection with only one Accessory Peer Agent, check the first callback.
You can also check the identity or properties of the discovered Accessory Peer Agents by calling the methods
provided by the SAPeerAgent class to decide which Accessory Peer Agent you want to form a Service Connection
with. The application can initiate a Service Connection with an Accessory Peer Agent by calling
SAAgent.requestServiceConnection().

This method is called from a worker thread. If you need to do any heavy lifting or long latency work in this callback,
spawn a separate thread.

If a Service Provider connects only with a specific Service Consumer, or a Service Consumer with a specific Service
Provider, the Service Provider and Consumer are called as ”companion apps”. When you only want to connect to a
companion Service Provider or Service Consumer, call the methods provided by the SAPeerAgent class for specific
information, such as model number or vendor information, before calling SAAgent.requestServiceConnection().
For example, when a photo printer Service Provider on an Accessory Device from a company only wants to connect
to a photo printer Service Consumer on a Smart Device from the same company, they are companion apps.

The remote Accessory Peer Agent either accepts or rejects your Service Connection request. Your application is
notified with the SAAgent.onServiceConnectionResponse() callback. The request can either be accepted and a
Service Connection is established, rejected, or failed to establish Service Connection for other reasons.

When a Service Connection is successfully established, the requesting Accessory Peer Agent gets an instance of the
SASocket object, which is used to handle Service Connection events and to send data or receive it from Accessory
Peer Agents.

@Override
protected void onFindPeerAgentsResponse(SAPeerAgent peerAgents[], int result) {
 ...
 switch(result) {
 case PEER_AGENT_FOUND:
 // Peer Agent is found
 requestServiceConnection(peerAgent);
 break;
 case FINDPEER_DEVICE_NOT_CONNECTED:
 // Peer Agents are not found, no accessory device connected
 ...
 break;
 case FINDPEER_SERVICE_NOT_FOUND:
 // No matching service on connected accessory
 ...
 break;
 ...
 }
}

SASocket mSocket = null;

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#requestServiceConnection(com.samsung.android.sdk.accessory.SAPeerAgent)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#requestServiceConnection(com.samsung.android.sdk.accessory.SAPeerAgent)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onServiceConnectionResponse(com.samsung.android.sdk.accessory.SAPeerAgent,%20com.samsung.android.sdk.accessory.SASocket,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 24

@Override
protected void onServiceConnectionResponse(SAPeerAgent peerAgent, SASocket socket, int result) {
 if(result == CONNECTION_SUCCESS) {
 // It is passed when a Service Connection has been established.
 mSocket = socket;
 }
 ...
}

3.3.5.Handling Setup Service Connection Request

The Service Provider or Consumer application is notified with the SAAgent.onServiceConnectionRequested()
callback when remote Accessory Peer Agents want to create a Service Connection with it. The Accessory Peer Agent
implementation can accept or reject Service Connection requests by calling the acceptServiceConnectionRequest
() or rejectServiceConnectionRequest() methods, respectively. The default implementation of the SAAgent.onS
erviceConnectionRequested() callback method is to accept every incoming Service Connection request from any
remote Accessory Peer Agent. Your Accessory Peer Agent implementation can override this method, usually to check
the identity and properties of the requesting remote Accessory Peer Agent before accepting or rejecting incoming
Service Connection requests.

The SAAgent.onServiceConnectionRequested() callback can check for Accessory Peer Agent specific information
before accepting Service Connection requests. You can use the SAPeerAgent object methods for checking specific
information, such as application name or vendor ID.

If your application accepts the Service Connection request, your application is notified through the SAAgent.onServi
ceConnectionResponse() callback when the Service Connection is established or a failure occurs. On success, a
SASocket object is passed with the callback. If you want to implement a Service Provider application that can serve
multiple Service Consumer applications at the same time, keep a repository of the SASocket objects for all active
Service Connections, and give an identifier for each SASocket object.

The SAAgent.onServiceConnectionResponse() callback is called from a worker thread. If you need to do any
heavy lifting or long latency work in this callback, spawn a separate thread.

@Override

protected void onServiceConnectionRequested(SAPeerAgent peerAgent) {

 // Makes a decision after checking the validation of given information.

 String vendorId = peerAgent.getAccessory().getVendorId();

 String productId = peerAgent.getAccessory().getVendorId();

 if (vendorId.equals("SAMSUNG ELECTRONICS") && productId.equals("SAMSUNG GEAR")) {

 // If connected accessory is the right device

 acceptServiceConnectionRequest(peerAgent);

 } else {

 // If connected accessory is not the right device

 rejectServiceConnectionRequest(peerAgent);

 }

 ...

NOTE. If setting up Service Connection failed continuously, it is your application's responsibility to call SAAgent.findPe
erAgents() to try to re-find the remote Accessory Peer Agent and SAAgent.requestServiceConnection() to make
Service Connection request again.

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onServiceConnectionRequested(com.samsung.android.sdk.accessory.SAPeerAgent)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#acceptServiceConnectionRequest(com.samsung.android.sdk.accessory.SAPeerAgent)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#acceptServiceConnectionRequest(com.samsung.android.sdk.accessory.SAPeerAgent)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#rejectServiceConnectionRequest(com.samsung.android.sdk.accessory.SAPeerAgent)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onServiceConnectionRequested(com.samsung.android.sdk.accessory.SAPeerAgent)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onServiceConnectionRequested(com.samsung.android.sdk.accessory.SAPeerAgent)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onServiceConnectionRequested(com.samsung.android.sdk.accessory.SAPeerAgent)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onServiceConnectionResponse(com.samsung.android.sdk.accessory.SAPeerAgent,%20com.samsung.android.sdk.accessory.SASocket,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onServiceConnectionResponse(com.samsung.android.sdk.accessory.SAPeerAgent,%20com.samsung.android.sdk.accessory.SASocket,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onServiceConnectionResponse(com.samsung.android.sdk.accessory.SAPeerAgent,%20com.samsung.android.sdk.accessory.SASocket,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#requestServiceConnection(com.samsung.android.sdk.accessory.SAPeerAgent)

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 25

}

SASocket mSocket = null;

@Override

protected void onServiceConnectionResponse(SAPeerAgent peerAgent, SASocket socket, int result)

{

 ...

 switch(result) {

 case CONNECTION_SUCCESS:

 // Peer Agent is found, store it for sending data

 mSocket = socket;

 break;

 case CONNECTION_FAILURE_NETWORK:

 // Try to request service connection again after a while

 ...

 break;

 case CONNECTION_ALREADY_EXIST:

 // Previous Service Connection is alive. Reuse it

 ...

 break;

 case CONNECTION_FAILURE_PEER_AGENT_REJECTED:

 // Peer Agent Rejected. Try to request service connection again after a while

 ...

 break;

 case CONNECTION_FAILURE_PEER_AGENT_NO_RESPONSE:

 // Peer Agent no response. Try to request service connection again after a while

 ...

 break;

 case CONNECTION_FAILURE_DEVICE_UNREACHABLE:

 // Accessory Device not reachable, may already be disconnected

 ...

 break;

 default:

 // Service Connection Fail, non-recoverable error

 ...

 break;

 ...

 }

 ...

}

3.3.6.Exchanging Data with Accessory Peer Agent

Call the SASocket.send() method of the SASocket object passed with the SAAgent.onServiceConnectionRespons
e() callback to send data on the selected Service Channel inside an established Service Connection. The Samsung
Accessory Service Framework provides a datagram service. Either all the data is sent or nothing is sent. The Service
Connection encapsulates all Service Channels as defined by the Accessory Service Profile specification. You can get
the Channel ID from SAAgent.getServiceChannelId().

Do not send a byte array bigger than SAPeerAgent.getMaxAllowedDataSize(), which returns the size limit that you
can send to the remote Accessory Peer Agent. The limit is a variable that depends on transport type and memory size
of the remote Accessory Device.

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#send(int,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onServiceConnectionResponse(com.samsung.android.sdk.accessory.SAPeerAgent,%20com.samsung.android.sdk.accessory.SASocket,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onServiceConnectionResponse(com.samsung.android.sdk.accessory.SAPeerAgent,%20com.samsung.android.sdk.accessory.SASocket,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html#getMaxAllowedDataSize()

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 26

try {
 mSocket.send(channel id, mJsonStringToSend.getBytes());
} catch (IOException e) {
 // Handle exception
...
}

If you want your data encrypted, call SASocket.secureSend() instead of SASocket.send().

When your application receives data from a remote Accessory Peer Agent, it is notified with the SASocket.onReceiv
e() callback. Implement the SASocket.onReceive() method to handle the data.

public class ServiceConnection extends SASocket{
 @Override
 public class onReceive(int channelId, byte[] data) {
 String str = new String(data);
 ...
 }
 ...
}

3.3.7.Disconnecting Service Connection

Call the SASocket.close() method in the SASocket object to terminate the Service Connection with the remote
Accessory Peer Agent. The remote Accessory Peer Agent is notified with the SASocket.onServiceConnectionLost()
callback and the Samsung Accessory Service Framework closes all the established Service Channels of the Service
Connection. If a remote Accessory Peer Agent calls SASocket.close() to terminate the Service Connection, your
application is notified with the same callback.

public boolean closeConnection() {
 if (mSocket != null) {
 mSocket.close();
 mSocket = null;
 }
 return true;
}

@Override
public void onServiceConnectionLost(int reason) {
 // This function is called when Service Connection is broken or lost
 // or there is a peer disconnection.
 switch (reason) {
 case CONNECTION_LOST_DEVICE_DETACHED:
 // If the Peer Agent is killed because of LMK OOM, call SAAgent.findPeerAgents()
 // and request Service Connection. Accessory will invoke Peer Agent in your method
 // implementation. You should follow the procedures in “Finding Peer Agents” and
 // “Setting Up Service Connection”.
 ...
 break;
 case CONNECTION_LOST_PEER_DISCONNECTED:

NOTE. SASocket.send() and SASocket.secureSend() methods are called from a worker thread. If you need to do
any heavy lifting or long latency work in this callback, spawn a separate thread. DO NOT invoke this method in the
main thread of the application.

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#secureSend(int,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#send(int,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#onReceive(int,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#onReceive(int,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#onReceive(int,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#close()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#onServiceConnectionLost(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#close()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#send(int,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#secureSend(int,%20byte[])

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 27

 // If device is out of range, or connectivity (BT, Wi-Fi, and etc.) is turned off.
 ...
 break;
 case CONNECTION_LOST_UNKNOWN_REASON:
 // Though it rarely happens, the error may be recoverable or not.
 // You may want to call SAAgent.findPeerAgents().
 // If found, you may want to re-connect in your method implementation.
 // you should follow the procedures in “Finding Peer Agent” and
 // “Setting Up Service Connection”.
 ...
 break;
 }
 ...
}

If a Service Connection is lost, for instance, due to a network failure or devices leaving the wireless connectivity range,
the Accessory Peer Agents are notified with the SASocket.onServiceConnectionLost() callback. However, it is not
necessary to close in the SASocket.onServiceConnectionLost() callback, since the Service connection is already
closed and cleaned up. You can handle these events by implementing the method illustrated in the following
example.

3.3.8.Handling Errors

Application is notified with the SAAgent.onError() callback about errors related with Service Channels, Accessory
Peer Agents and Samsung Accessory Service Framework. For detailed error types, see the API reference.

@Override

public void onError(SAPeerAgent peerAgent, String errorMessage, int errorCode) {

switch (errorCode){

case ERROR_CONNECTION_INVALID_PARAM:

 // Data cleared by user(in Settings-> Application Manager-> Clear data)

 // or data lost for other reasons except run-time recoverable errors and reboot is

 // needed, you may want to exit the application.

 break;

case ERROR_FATAL:

 // Samsung Accessory Service Framework died or binding failure

 // Fatal error, you need to stop using Accessory

 break;

case ERROR_PERMISSION_DENIED:

 // Required permission missed, check the AndroidManifest.xml

 break;

case ERROR_PERMISSION_FAILED:

 // Permission failure when application is installed before Samsung Accessory Service

 // Framework is installed. Reinstallation of the application might be needed

 break;

 case ERROR_SDK_NOT_INITIALIZED:

 // Samsung Accessory SDK is not initialized

 // It's necessary to install Samsung Accessory Service Framework and call SA.initialize()

 break;

NOTE. If you want to restore Service Connection, it is your application's responsibility to call SAAgent.findPeerAgent
s() to try to re-find the remote Accessory Peer Agent and SAAgent.requestServiceConnection() to make Service
Connection request again.

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#onServiceConnectionLost(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#onServiceConnectionLost(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onError-com.samsung.android.sdk.accessory.SAPeerAgent-java.lang.String-int-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#requestServiceConnection(com.samsung.android.sdk.accessory.SAPeerAgent)

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 28

}

...

}

Below are some transient errors due to Android environment:

- Low memory

It is recommended to close all Service Connection in the onLowMemory() callback of your SAAgent
implementation (onLowMemory() is an inherited method from Service) to release caches.

If your application process is killed by Android Low Memory Killer (LMK), it will notify the
SASocket.onServiceConnectionLost() callback. Your application or peer applications should create Service
Connection again upon restart.

- Application crash or onDestroy()

If the application crashed from whatever reason, all Service Connections will be terminated. Upon restart, it is
your application’s responsibility to restore the Service Connection.

When the SAAgent implementation is being removed by Android (will get SAAgent.onDestroy()), all Service
Connections with the Accessory Peer Agent will be terminated.

If your application has cashed references of SAPeerAgent object, they can be cleared in using
SAAgent.onDestory(). Your application can refresh SAPeerAgent object with a fresh call to
SAAgent.findPeerAgents() when you application is restarted.

- SAMSUNG ACCESSORY SERVICE be killed

If SAMSUNG ACCESSORY SERVICE is killed on a local device, application will be notified with an ERROR_FATAL
callback error code. In this case, your application needs to stop using Accessory. After restoring SAMSUNG
ACCESSORY SERVICE, it will automatically make application ready to set up a service connection via the
broadcast receiver.

- Application stopSelf()

It is strongly recommended to close Service Connections before the application stops itself. Calling stopSelf()
notifies the Accessory Peer Agent in a graceful way. If stopSelf() is not called, all Service Connections will be
terminated SAMSUNG ACCESSORY SERVICE and both sides will receive the
SASocket.onServiceConnectionLost() callback. Your application or peer application should find the
remote Accessory Peer Agent and create Service Connection again upon restart.

3.3.9.Indicating the status of Accessory Peer Agent

After you call SAAgent.findPeerAgents(), the Samsung Accessory Service Framework keeps track of any changes in
the availability of the matching Accessory Peer Agents for your application. If a change occurs, your application is
notified with the SAAgent.onPeerAgentsUpdated() callback. This happens especially when an Accessory Device
with a matching Accessory Peer Agent is connected or disconnected, or a matching Accessory Peer Agent is installed
or uninstalled on a remote Accessory Device. If a matching Accessory Peer Agent is not found when calling SAAgent.
findPeerAgents(), the SAAgent.onFindPeersAgentResponse() callback gets a failure code. When it becomes

NOTE. If you want to restore Service Connection, it is your application's responsibility to call SAAgent.findPeerAgent
s() to try to re-find the remote Accessory Peer Agent and SAAgent.requestServiceConnection() to make Service
Connection request again.

http://developer.android.com/reference/android/app/Service.html#onLowMemory()
http://kr1.samsung.net/portal/desktop/main.dohttps:/img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://developer.android.com/reference/android/app/Service.html#onLowMemory()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#onServiceConnectionLost(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#ERROR_FATAL
http://developer.android.com/reference/android/app/Service.html#stopSelf()
http://developer.android.com/reference/android/app/Service.html#stopSelf()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#onServiceConnectionLost(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onPeerAgentsUpdated-com.samsung.android.sdk.accessory.SAPeerAgent:A-int-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onFindPeerAgentsResponse(com.samsung.android.sdk.accessory.SAPeerAgent[],%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#requestServiceConnection(com.samsung.android.sdk.accessory.SAPeerAgent)

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 29

available, you can get the PEER_AGENT_AVAILABLE SAAgent.onPeerAgentsUpdated() callback. Your application can
check the identity or properties of the new Accessory Peer Agent by using the APIs in the SAPeerAgent object, and
decide whether to request a Service Connection with that Accessory Peer Agent.

@Override
protected void onPeerAgentUpdated(SAPeerAgent peerAgent, int result) {
 if(result == PEER_AGENT_AVAILABLE) {
 requestServiceConnection(peerAgent);
 } else if (result == PEER_AGENT_UNAVAILABLE) {
 // Peer Agent no longer available
 }
 ...
}

3.3.10.Authenticating Accessory Peer Agent

The SAAgent.onServiceConnectionRequested() callback can check for Accessory Peer Agent specific information
before accepting Service Connection requests. You can use the SAPeerAgent object methods for checking specific
information, such as application name or vendor ID. In addition, you can optionally authenticate the Peer Agent by
checking its key and then decide whether to accept or reject its Service Connection request.

NOTE. The authenticating Accessory Peer Agent may not work properly depending on the firmware version of
accessory device. It is recommended to upgrade accessory device firmware if possible.

@Override
protected void onServiceConnectionRequested(SAPeerAgent peerAgent) {
 // Check Peer Agent’s basic info
 if(peerAgent.getAccessory().getVendorId().equals("SAMSUNG ELECTRONICS")
 && peerAgent.getAccessory().getProductId().equals("SAMSUNG GEAR")){
 // Authenticate Peer Agent for enhanced security
 authenticatePeerAgent(peerAgent);
 } else {
 rejectServiceConnectionRequest(peerAgent);
 }
}

@Override
protected void onAuthenticationResponse(SAPeerAgent peerAgent, SAAuthenticationToken authToken, int
code) {
 ...
 // Get the certificate from context
 byte[] myAppKey = getApplicationCertificate(mContext);

 // Compare it to certificate received from remote peer.
 if (authToken.getKey().length != myAppKey.length) {
 matched = false;
 } else {
 for (int i = 0; i < authToken.getKey().length; i++) {
 if (authToken.getKey()[i] != myAppKey[i]) {
 matched = false;
 }
 }
 }
 // if identical, do further work like accept service connection request
 ...
}

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#PEER_AGENT_AVAILABLE
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onPeerAgentsUpdated-com.samsung.android.sdk.accessory.SAPeerAgent:A-int-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onServiceConnectionRequested(com.samsung.android.sdk.accessory.SAPeerAgent)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 30

NOTE. Due to platform difference, it’s necessary that Gear App creates author certificate using Android keystore.
Please refer to Appendix D. Creating Gear Author Certificate Using Android Keystore. It’s also necessary to sign
Android App with Android Keystore and Gear App with author certificate created from Android Keystore.

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 31

4. Accessory for JobService
SAAgentV2 is a new version of SAAgent to support Android JobService instead of Android Service. It has same
functionalities as SAAgent but code generation has few differences from SAAgent. Please refer to the sample codes
below.

NOTICE. Please note that if you want to build your application on Android O OS or above and if you don’t want to make
a notification to run SAAgent service in foreground, you should use SAAgentV2 instead of SAAgent.

4.1. Hello Accessory

Hello Accessory is a pseudo code example to show how to:

- Initialize Accessory.

- Connect with the remote Accessory Peer Agent.

- Send and receive JSON messages between Accessory Peer Agents.

For more information about sample applications, please visit
http://developer.samsung.com/gear/develop/samples/companion

Hello Accessory is composed of two parts: Consumer and Provider.

4.1.1.Consumer Application

Consumer application has the functionalities below

Initiates service connection request and sends command to Service Provider.

Shows a received response to user.

class HelloAccessoryConsumer extends SAAgentV2 {
...
 public HelloAccessoryConsumer(Context context) {
 super(AGENT_NAME, context, SOCKET_CLASS);
 try {
 Initialize SA;
 } catch (Exception e) {
 // Exception handling
 }

 void onFindPeerAgentsResponse(SAPeerAgent[] peerAgents, int result) {
 if (result == PEER_AGENT_FOUND) {
 for(SAPeerAgent peerAgent:peerAgents) {
 Cache(peerAgent);
 requestServiceConnection(peerAgent);
 }
 }
 }

 void onServiceConnectionResponse(SAPeerAgent peerAgent, SASocket socket, int result) {
 if (result == CONNECTION_SUCCESS) {

http://kr1.samsung.net/portal/desktop/main.dohttps:/img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://kr1.samsung.net/portal/desktop/main.dohttps:/img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://developer.samsung.com/gear/develop/samples/companion

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 32

 Cache(socket);
 Create WorkerThread(
 try {
 message = composeMessage();
 socket.send(channel_id, message);
 } catch (Exception e) {
 // Exception handling
 }
);
 }

 void onError(SAPeerAgent peerAgent, String errorMessage, int errorCode) {
 super.onError(peerAgent, errorMessage, errorCode);
 // Error handling
 }

 class ServiceConnection extends SASocket {
 public ServiceConnection() {
 super(ServiceConnection.class.getName());
 }

 void onError(int channelId, String errorMessage, int errorCode) {
 // Error handling
 }

 void onReceive(int channelId, byte[] data) {
 message = Parse(data);
 showMessage(message);
 }

 void onServiceConnectionLost(int reason) {
 ResetCache();
 close();
 }
 }
...
}

4.1.2.Provider Application

Provider application has the functionalities below

Accepts a received service connection request from Service Consumer.

Replies to a received command from Service Consumer with current time stamp.

class HelloAccessoryProvider extends SAAgentV2 {
...
 public HelloAccessoryProvider(Context context) {
 super(AGENT_NAME, context, SOCKET_CLASS);
 try {
 Initialize SA;
 } catch (Exception e) {
 // Exception handling
 }
 }

 void onServiceConnectionRequested(SAPeerAgent peerAgent) {
 if (peerAgent != null) {
 acceptServiceConnectionRequest(peerAgent);
 }
 }

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 33

 void onServiceConnectionResponse(SAPeerAgent peerAgent, SASocket socket, int result) {
 if (result == CONNECTION_SUCCESS) {
 Cache(socket);
 }
 }

 void onError(SAPeerAgent peerAgent, String errorMessage, int errorCode) {
 super.onError(peerAgent, errorMessage, errorCode);
 // Error handling
 }

 class ServiceConnection extends SASocket {
 public ServiceConnection() {
 super(ServiceConnection.class.getName());
 }

 void onError(int channelId, String errorMessage, int errorCode) {
 // Error handling
 }

 void onReceive(int channelId, byte[] data) {
 Create WorkerThread(
 message = Parse(data);
 try {
 response = composeResponse(message);
 send(channel_id, response);
 } catch (Exception e) {
 // Exception handling
 }
);
 }

 void onServiceConnectionLost(int reason) {
 ResetCache();
 close();
 }
 }
...
}

4.2. Using the SA Class

The SA class provides the following methods:

- initialize() initializes Accessory. You need to initialize Accessory before you can use it. If the device does not
support Accessory, SsdkUnsupportedException is thrown.

- getVersionCode() gets the Accessory library version number as an integer.

- getVersionName() gets the Accessory library version name as a string.

- isFeatureEnabled() checks if the Accessory feature is available on the device.

SA sa = new SA();

try {

 sa.itialize(applicationContext) {

 boolean isFeatureEnabled = sa.isFeatureEnabled(SA.DEVICE_ACCESSORY);

} catch (final SsdkUnsupportedException e) {

// try to handle SsdkUnsupportedException

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#initialize(android.content.Context)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#getVersionCode()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#getVersionName()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#isFeatureEnabled(int)

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 34

if (e.getType() == SsdkUnsupportedException.LIBRARY_NOT_INSTALLED) {

 // You should install service application first.

}

 } catch (Exception e1) {

 // Your application cannot use Accessory. Your application should work smoothly without

 // using Accessory, or you may want to notify the user and close your application

 // gracefully (release resources, stop Service threads, close UI thread, etc.)

return;

}

int versionCode = sa.getVersionCode();

String versionName = sa.getVersionName();

4.2.1.Using initialize()

The SA.initialize() method:

- Initializes Accessory.

- Checks if the device is a Samsung device.

- Checks if the device supports Accessory.

- Checks if Accessory libraries are installed on the device.

If Accessory fails to initialize, the SA.initialize() method throws an SsdkUnsupportedException exception. To
find out the reason for the exception, check the exception message.

void initialize(Context context) throws SsdkUnsupportedException

4.2.2.Handling SsdkUnsupportedException

If an SsdkUnsupportedException exception is shown, check the exception message type using
SsdkUnsupportedExcpetion.getType().

The following types of exception messages are defined in the SA class:

- LIBRARY_NOT_INSTALLED: The Samsung Accessory Service Framework is not installed on the device.

4.2.3.Checking the Availability of Accessory

The application can check if the Accessory feature is supported on the device with the SA.isFeatureEnabled()
method. The feature types are defined in the SA class. The feature type is passed as a parameter when calling the SA.
isFeatureEnabled() method. The method returns a Boolean value that indicates the support for the feature on the
device.

The following type is defined in the SA class:

- DEVICE_ACCESSORY

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#initialize(android.content.Context)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#initialize(android.content.Context)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html#getType()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#isFeatureEnabled(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#isFeatureEnabled(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#isFeatureEnabled(int)

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 35

boolean isFeatureEnabled(int type)

4.3. Using Accessory for JobService

The following chapter describes how to use Accessory for JobService.

4.3.1.Declaring in Android Manifest

Communicating with the remote Peer Agent needs the broadcast receiver below. If it is not added in the
AndroidManifest.xml file, any intent handled by Samsung Accessory Service Framework is not delivered to the
developer’s created application.

<application>

...

<receiver
android:name="com.samsung.android.sdk.accessory.ServiceConnectionIndicationBroadcastReceiver">

<intent-filter>

<action android:name="com.samsung.accessory.action.SERVICE_CONNECTION_REQUESTED" />

</intent-filter>

</receiver>

<receiver android:name="com.samsung.android.sdk.accessory.RegisterUponInstallReceiver">

<intent-filter>

<action android:name="com.samsung.accessory.action.REGISTER_AGENT" />

</intent-filter>

</receiver>

...

</application>

Communicating with the remote Peer Agent needs the declarations of a job service and a service in the
AndroidManifest.xml. SAJobService is used in the devices above Android O OS and SAService is used in the devices
below Android O OS.

<application>

...
 <service android:name="com.samsung.android.sdk.accessory.SAJobService"
 android:permission="android.permission.BIND_JOB_SERVICE"/>

 <service android:name="com.samsung.android.sdk.accessory.SAService" />
...

</application>

NOTE. Name of actions are changed from 2.3.0. The old actions are not anymore supported in the latest Accessory
SDK.

NOTE. The SAAgentV2 class does not extend the Android service. SAJobService (or SAService) can be executed in a
worker thread and make SAAgentV2 to handle asynchronous Accessory-related intents.

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 36

4.3.2.Defining Accessory Service Profile

Communicating with remote Peer Agent needs the declaration of descriptions about Accessory Service Profile. This is
declared in a separate file in /res/xml folder in the developer’s application project. The path of the actual XML file can
be added in the application’s AndroidManifest.xml.

For example, /res/xml/<profileName>.xml:

<application>

 ...

<meta-data android:name="AccessoryServicesLocation" android:value="/res/xml/<profileName>.xml" />

...

</application>

Its elements and attributes are described in the following table.

Element Attribute Description

application name The name that you want the Samsung Accessory Service Framework to advertise in
the Accessory eco-system. Usually the application's Android AppName is used. You
can implement multiple Service Providers and Service Consumers in one application.
In that case, declare multiple <serviceProfile> elements inside the <application>
element.

NOTE. This attribute allows up to 30 characters.

serviceProfile serviceImpl The subclass that extends SAAgentV2.

role The direction to serve an associated service to Accessory Peer Agents.

NOTE. The value must be either “provider” or “consumer”

name The name of your Service Provider or Service Consumer.

NOTE. This attribute allows up to 30 characters.

id The Service Profile ID of the Service Provider or Service Consumer.

NOTE. It is necessary to start with ‘/’. It then allows [0-9], [a-z], ‘_’ and ‘/’ (as
delimiter). This attribute allows up to 30 characters.

version The Service Profile specification version that your Service Provider or Service
Consumer application supports. This attribute is represented as a two-part string
with the following format: <major>.<minor>.

NOTE. The major version and minor version have a maximum value of 255.

serviceLimit* The number of Accessory Peer Agents that you want to connect with concurrently. If
an Accessory Peer Agent requests a Service Connection with your application after
you have reached the limit, the Samsung Accessory Service Framework rejects the
Service Connection request. The attribute can be one of the following values:

one_peeragent

: Supports only one Accessory Peer Agent

one_accessory

: Supports only one Accessory Device

: Can have Service Connections to multiple Accessory Peer Agents on an
Accessory Device

any

: Supports multiple Accessory Peer Agents on multiple Accessory Devices

file:///C:/SVN/document/SDK/Release/SVN/document/SDK/mySingle/AppData/Local/Microsoft/Windows/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/workspace/AppcessorySDK/doc/com/samsung/android/sdk/accessory/SAAgent.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 37

NOTE. If you do not set the value, “any” is applied by default.

serviceTimeout* The timeout in seconds for handling incoming Service Connection requests. This
attribute is optional. If you do not set the value, the default timeout is applied. Use
the default timeout unless your application needs more time to make a decision to
accept or reject incoming Service Connection requests. If it is needed, e.g., in cases
when it needs to connect to a cloud server, show a UI prompting the user to either
accept or reject the request. On the other hand, if it needs to do authentication, set
the attribute value for the timeout of the decision. If the timeout has exceeded, the
requesting Accessory Peer Agent gets the response that Service Connection failed
because your application did not respond.

NOTE. This attribute allows up to 300 seconds.

serviceProfile

supportedTransports

transport The transports on which the Service Provider or Service Consumer is able to
operate. The Samsung Accessory Service Framework supports the
TRANSPORT_WIFI, TRANSPORT_BT, TRANSPORT_BLE, and TRANSPORT_USB
transport types. If your Service Provider or Service Consumer supports multiple
transport types, declare multiple <transports> elements.

NOTE. The current version of the Samsung Accessory Service Framework supports
TRANSPORT_BT and TRANSPORT_WIFI (only for Emulator). Other types will be
supported soon.

serviceChannel dataRate The throughput at which data traffic originated from the Accessory Agent.

NOTE. The value must be either “low” or “high”.

priority The basis on which the application prioritizes transmissions of messages to
Accessory Peer Agent.

NOTE. The value must be either “low”, “medium”, or “high”.

reliability The basis on which the application can have a reliable transfer or not. In case of a
packet drop, a reliable transfer re-transmits the packet but also creates additional
overhead.

NOTE. The value must be either “enable” or “disable”.

NOTE. Optional attributes are denoted with an asterisk (*).

Table 5: Defining Accessory Service Profile

An example of Accessory Service Profile XML:

<resources>
 <application name="ProviderExample">
 <serviceProfile
 serviceImpl="com.samsung.accessory.example.providerServiceImpl"
 role="provider"
 name="ExampleService"
 id="/app/example"
 version="1.0"
 serviceLimit="any"
 serviceTimeout="10">
 <supportedTransports>
 <transport type="TRANSPORT_BT"/>
 </supportedTransports>
 <serviceChannel
 id="910"
 dataRate="low"
 priority="high"
 reliability="enable"/>
 </serviceProfile>

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 38

 </application>
</resources>

When the application is installed, the Samsung Accessory Service Framework automatically registers its Accessory
Peer Agents using the information specified in your Service profile XML file. Similarly, the Accessory Peer Agents are
deregistered when the application is uninstalled. An error log is dumped if the registration process fails to register
the Accessory Service Profile implementation. To define the Accessory Service Profile, refer to A.2.

4.3.3.Declaring constructor

Implementation class of SAAgentV2 must declare a constructor having application context as a parameter.

public HelloAccessoryConsumer(Context context) {
 // call constructor of SAAgentV2 class

super(AGENT_NAME, context, SOCKET_CLASS);
}

If you don’t use SASocket for service connection and only use SAMessage(Please refer to Accessory Message), you
can call super constructor without SOCKET_CLASS like below codes.

public HelloAccessoryConsumer(Context context) {
 // call constructor of SAAgentV2 class

super(AGENT_NAME, context);
}

4.3.4.Finding Accessory Peer Agents

Service Provider or Service Consumer application can search for matching Accessory Peer Agents by calling the SAAge
ntV2.findPeerAgents() method. Matching Accessory Peer Agents have the same Accessory Service Profile, i.e.,
Notification Service or Weather Service, and have a complementary provider or consumer relationship with the
calling Accessory Peer Agent. Accessory Peer Agents with different Accessory Service Profiles for Service Providers or
Service Consumers do not “match” and cannot be connected with each other. If two Accessory Peer Agents have the
same Accessory Service Profile with different versions, however, they are still considered to “match”. For example,
Notification Service Consumer that implements the Notification Service Profile version 2.0 and a Notification Service
Provider that implements the Notification Service Profile version 1.0 “match”.

The application searches for matching Peer Agents by calling SAAgentV2.findPeerAgents(). If matching Peer
Agents are found, it is notified by the function called SAAgentV2.onFindPeerAgentsResponse(). If a matching Peer
Agent is not found, it is notified with the same callback. The result will have a null Peer Agent and the reason why
there’s no match found.

@Override
protected void onFindPeerAgentsResponse(SAPeerAgent peerAgents[], int result) {
 ...
 switch(result) {
 case PEER_AGENT_FOUND:

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#findPeerAgents()
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#onFindPeerAgentsResponse-com.samsung.android.sdk.accessory.SAPeerAgent:A-int-

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 39

 // Peer Agent is found
 ...
 break;
 case FINDPEER_DEVICE_NOT_CONNECTED:
 // Peer Agents are not found, no accessory device connected
 ...
 break;
 case FINDPEER_SERVICE_NOT_FOUND:
 // No matching service on connected accessory
 ...
 break;
 ...
 }
}

4.3.5.Setting up Service Connection

If the application wants to establish a Service Connection with only one Accessory Peer Agent, check the first callback.
You can also check the identity or properties of the discovered Accessory Peer Agents by calling the methods
provided by the SAPeerAgent class to decide which Accessory Peer Agent you want to form a Service Connection
with. The application can initiate a Service Connection with an Accessory Peer Agent by calling
SAAgentV2.requestServiceConnection().

This method is called from a worker thread. If you need to do any heavy lifting or long latency work in this callback,
spawn a separate thread.

If a Service Provider connects only with a specific Service Consumer, or a Service Consumer with a specific Service
Provider, the Service Provider and Consumer are called as ”companion apps”. When you only want to connect to a
companion Service Provider or Service Consumer, call the methods provided by the SAPeerAgent class for specific
information, such as model number or vendor information, before calling
SAAgentV2.requestServiceConnection(). For example, when a photo printer Service Provider on an Accessory
Device from a company only wants to connect to a photo printer Service Consumer on a Smart Device from the same
company, they are companion apps.

The remote Accessory Peer Agent either accepts or rejects your Service Connection request. Your application is
notified with the SAAgentV2.onServiceConnectionResponse() callback. The request can either be accepted and a
Service Connection is established, rejected, or failed to establish Service Connection for other reasons.

When a Service Connection is successfully established, the requesting Accessory Peer Agent gets an instance of the
SASocket object, which is used to handle Service Connection events and to send data or receive it from Accessory
Peer Agents.

@Override
protected void onFindPeerAgentsResponse(SAPeerAgent peerAgents[], int result) {
 ...
 switch(result) {
 case PEER_AGENT_FOUND:
 // Peer Agent is found
 requestServiceConnection(peerAgent);
 break;
 case FINDPEER_DEVICE_NOT_CONNECTED:
 // Peer Agents are not found, no accessory device connected
 ...
 break;

https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#requestServiceConnection-com.samsung.android.sdk.accessory.SAPeerAgent-
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#requestServiceConnection-com.samsung.android.sdk.accessory.SAPeerAgent-
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#onServiceConnectionResponse-com.samsung.android.sdk.accessory.SAPeerAgent-com.samsung.android.sdk.accessory.SASocket-int-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 40

 case FINDPEER_SERVICE_NOT_FOUND:
 // No matching service on connected accessory
 ...
 break;
 ...
 }
}

SASocket mSocket = null;

@Override
protected void onServiceConnectionResponse(SAPeerAgent peerAgent, SASocket socket, int result) {
 if(result == CONNECTION_SUCCESS) {
 // It is passed when a Service Connection has been established.
 mSocket = socket;
 }
 ...
}

4.3.6.Handling Setup Service Connection Request

The Service Provider or Consumer application is notified with the SAAgentV2.onServiceConnectionRequested()
callback when remote Accessory Peer Agents want to create a Service Connection with it. The Accessory Peer Agent
implementation can accept or reject Service Connection requests by calling the acceptServiceConnectionRequest
() or rejectServiceConnectionRequest() methods, respectively. The default implementation of the SAAgentV2.o
nServiceConnectionRequested() callback method is to accept every incoming Service Connection request from
any remote Accessory Peer Agent. Your Accessory Peer Agent implementation can override this method, usually to
check the identity and properties of the requesting remote Accessory Peer Agent before accepting or rejecting
incoming Service Connection requests.

The SAAgentV2.onServiceConnectionRequested() callback can check for Accessory Peer Agent specific
information before accepting Service Connection requests. You can use the SAPeerAgent object methods for
checking specific information, such as application name or vendor ID.

If your application accepts the Service Connection request, your application is notified through the SAAgentV2.onSer
viceConnectionResponse() callback when the Service Connection is established or a failure occurs. On success, a
SASocket object is passed with the callback. If you want to implement a Service Provider application that can serve
multiple Service Consumer applications at the same time, keep a repository of the SASocket objects for all active
Service Connections, and give an identifier for each SASocket object.

The SAAgentV2.onServiceConnectionResponse() callback is called from a worker thread. If you need to do any
heavy lifting or long latency work in this callback, spawn a separate thread.

@Override

protected void onServiceConnectionRequested(SAPeerAgent peerAgent) {

 // Makes a decision after checking the validation of given information.

 String vendorId = peerAgent.getAccessory().getVendorId();

 String productId = peerAgent.getAccessory().getVendorId();

NOTE. If setting up Service Connection failed continuously, it is your application's responsibility to call SAAgentV2.find
PeerAgents() to try to re-find the remote Accessory Peer Agent and SAAgentV2.requestServiceConnection() to
make Service Connection request again.

https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#onServiceConnectionRequested-com.samsung.android.sdk.accessory.SAPeerAgent-
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#acceptServiceConnectionRequest-com.samsung.android.sdk.accessory.SAPeerAgent-
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#acceptServiceConnectionRequest-com.samsung.android.sdk.accessory.SAPeerAgent-
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#rejectServiceConnectionRequest-com.samsung.android.sdk.accessory.SAPeerAgent-
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#onServiceConnectionRequested-com.samsung.android.sdk.accessory.SAPeerAgent-
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#onServiceConnectionRequested-com.samsung.android.sdk.accessory.SAPeerAgent-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#onServiceConnectionRequested(com.samsung.android.sdk.accessory.SAPeerAgent)
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#onServiceConnectionResponse-com.samsung.android.sdk.accessory.SAPeerAgent-com.samsung.android.sdk.accessory.SASocket-int-
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#onServiceConnectionResponse-com.samsung.android.sdk.accessory.SAPeerAgent-com.samsung.android.sdk.accessory.SASocket-int-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#onServiceConnectionResponse-com.samsung.android.sdk.accessory.SAPeerAgent-com.samsung.android.sdk.accessory.SASocket-int-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#requestServiceConnection(com.samsung.android.sdk.accessory.SAPeerAgent)

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 41

 if (vendorId.equals("SAMSUNG ELECTRONICS") && productId.equals("SAMSUNG GEAR")) {

 // If connected accessory is the right device

 acceptServiceConnectionRequest(peerAgent);

 } else {

 // If connected accessory is not the right device

 rejectServiceConnectionRequest(peerAgent);

 }

 ...

}

SASocket mSocket = null;

@Override

protected void onServiceConnectionResponse(SAPeerAgent peerAgent, SASocket socket, int result)

{

 ...

 switch(result) {

 case CONNECTION_SUCCESS:

 // Peer Agent is found, store it for sending data

 mSocket = socket;

 break;

 case CONNECTION_FAILURE_NETWORK:

 // Try to request service connection again after a while

 ...

 break;

 case CONNECTION_ALREADY_EXIST:

 // Previous Service Connection is alive. Reuse it

 ...

 break;

 case CONNECTION_FAILURE_PEER_AGENT_REJECTED:

 // Peer Agent Rejected. Try to request service connection again after a while

 ...

 break;

 case CONNECTION_FAILURE_PEER_AGENT_NO_RESPONSE:

 // Peer Agent no response. Try to request service connection again after a while

 ...

 break;

 case CONNECTION_FAILURE_DEVICE_UNREACHABLE:

 // Accessory Device not reachable, may already be disconnected

 ...

 break;

 default:

 // Service Connection Fail, non-recoverable error

 ...

 break;

 ...

 }

 ...

}

4.3.7.Exchanging Data with Accessory Peer Agent

Call the SASocket.send() method of the SASocket object passed with the SAAgentV2.onServiceConnectionRespo
nse() callback to send data on the selected Service Channel inside an established Service Connection. The Samsung

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#send(int,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#onServiceConnectionResponse-com.samsung.android.sdk.accessory.SAPeerAgent-com.samsung.android.sdk.accessory.SASocket-int-
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#onServiceConnectionResponse-com.samsung.android.sdk.accessory.SAPeerAgent-com.samsung.android.sdk.accessory.SASocket-int-

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 42

Accessory Service Framework provides a datagram service. Either all the data is sent or nothing is sent. The Service
Connection encapsulates all Service Channels as defined by the Accessory Service Profile specification. You can get
the Channel ID from SAAgentV2.getServiceChannelId().

Do not send a byte array bigger than SAPeerAgent.getMaxAllowedDataSize(), which returns the size limit that you
can send to the remote Accessory Peer Agent. The limit is a variable that depends on transport type and memory size
of the remote Accessory Device.

try {
 mSocket.send(channel id, mJsonStringToSend.getBytes());
} catch (IOException e) {
 // Handle exception
...
}

If you want your data encrypted, call SASocket.secureSend() instead of SASocket.send().

When your application receives data from a remote Accessory Peer Agent, it is notified with the SASocket.onReceiv
e() callback. Implement the SASocket.onReceive() method to handle the data.

public class ServiceConnection extends SASocket{
 @Override
 public class onReceive(int channelId, byte[] data) {
 String str = new String(data);
 ...
 }
 ...
}

4.3.8.Disconnecting Service Connection

Call the SASocket.close() method in the SASocket object to terminate the Service Connection with the remote
Accessory Peer Agent. The remote Accessory Peer Agent is notified with the SASocket.onServiceConnectionLost()
callback and the Samsung Accessory Service Framework closes all the established Service Channels of the Service
Connection. If a remote Accessory Peer Agent calls SASocket.close() to terminate the Service Connection, your
application is notified with the same callback.

public boolean closeConnection() {
 if (mSocket != null) {
 mSocket.close();
 mSocket = null;
 }
 return true;
}

@Override
public void onServiceConnectionLost(int reason) {
 // This function is called when Service Connection is broken or lost

NOTE. SASocket.send() and SASocket.secureSend() methods are called from a worker thread. If you need to do
any heavy lifting or long latency work in this callback, spawn a separate thread. DO NOT invoke this method in the
main thread of the application.

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#PEER_AGENT_AVAILABLE
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html#getMaxAllowedDataSize()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#secureSend(int,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#send(int,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#onReceive(int,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#onReceive(int,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#onReceive(int,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#close()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#onServiceConnectionLost(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#close()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#send(int,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#secureSend(int,%20byte[])

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 43

 // or there is a peer disconnection.
 switch (reason) {
 case CONNECTION_LOST_DEVICE_DETACHED:
 // If the Peer Agent is killed because of LMK OOM, call SAAgentV2.findPeerAgents()
 // and request Service Connection. Accessory will invoke Peer Agent in your method
 // implementation. You should follow the procedures in “Finding Peer Agents” and
 // “Setting Up Service Connection”.
 ...
 break;
 case CONNECTION_LOST_PEER_DISCONNECTED:
 // If device is out of range, or connectivity (BT, Wi-Fi, and etc.) is turned off.
 ...
 break;
 case CONNECTION_LOST_UNKNOWN_REASON:
 // Though it rarely happens, the error may be recoverable or not.
 // You may want to call SAAgentV2.findPeerAgents().
 // If found, you may want to re-connect in your method implementation.
 // you should follow the procedures in “Finding Peer Agent” and
 // “Setting Up Service Connection”.
 ...
 break;
 }
 ...
}

If a Service Connection is lost, for instance, due to a network failure or devices leaving the wireless connectivity range,
the Accessory Peer Agents are notified with the SASocket.onServiceConnectionLost() callback. However, it is not
necessary to close in the SASocket.onServiceConnectionLost() callback, since the Service connection is already
closed and cleaned up. You can handle these events by implementing the method illustrated in the following
example.

4.3.9.Handling Errors

Application is notified with the SAAgentV2.onError() callback about errors related with Service Channels, Accessory
Peer Agents and Samsung Accessory Service Framework. For detailed error types, see the API reference.

@Override

public void onError(SAPeerAgent peerAgent, String errorMessage, int errorCode) {

switch (errorCode){

case ERROR_CONNECTION_INVALID_PARAM:

 // Data cleared by user(in Settings-> Application Manager-> Clear data)

 // or data lost for other reasons except run-time recoverable errors and reboot is

 // needed, you may want to exit the application.

 break;

case ERROR_FATAL:

 // Samsung Accessory Service Framework died or binding failure

 // Fatal error, you need to stop using Accessory

 break;

case ERROR_PERMISSION_DENIED:

 // Required permission missed, check the AndroidManifest.xml

NOTE. If you want to restore Service Connection, it is your application's responsibility to call SAAgentV2.findPeerAge
nts() to try to re-find the remote Accessory Peer Agent and SAAgentV2.requestServiceConnection() to make
Service Connection request again.

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#onServiceConnectionLost(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#onServiceConnectionLost(int)
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#onError-com.samsung.android.sdk.accessory.SAPeerAgent-java.lang.String-int-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#requestServiceConnection(com.samsung.android.sdk.accessory.SAPeerAgent)

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 44

 break;

case ERROR_PERMISSION_FAILED:

 // Permission failure when application is installed before Samsung Accessory Service

 // Framework is installed. Reinstallation of the application might be needed

 break;

 case ERROR_SDK_NOT_INITIALIZED:
 // Samsung Accessory SDK is not initialized

 // It's necessary to install Samsung Accessory Service Framework and call SA.initialize()

 break;

}

...

}

Below are some transient errors due to Android environment:

- Low memory

It is recommended to close all Service Connection in the onLowMemory() callback of your SAAgent
implementation (onLowMemory() is an inherited method from Service) to release caches.

If your application process is killed by Android Low Memory Killer (LMK), it will notify the
SASocket.onServiceConnectionLost() callback. Your application or peer applications should create Service
Connection again upon restart.

- SAMSUNG ACCESSORY SERVICE be killed

If SAMSUNG ACCESSORY SERVICE is killed on a local device, application will be notified with an ERROR_FATAL
callback error code. In this case, your application needs to stop using Accessory. After restoring SAMSUNG
ACCESSORY SERVICE, it will automatically make application ready to set up a service connection via the
broadcast receiver.

4.3.10.Indicating the status of Accessory Peer Agent

After you call SAAgentV2.findPeerAgents(), the Samsung Accessory Service Framework keeps track of any changes
in the availability of the matching Accessory Peer Agents for your application. If a change occurs, your application is
notified with the SAAgentV2.onPeerAgentsUpdated() callback. This happens especially when an Accessory Device
with a matching Accessory Peer Agent is connected or disconnected, or a matching Accessory Peer Agent is installed
or uninstalled on a remote Accessory Device. If a matching Accessory Peer Agent is not found when calling SAAgentV
2.findPeerAgents(), the SAAgentV2.onFindPeersAgentResponse() callback gets a failure code. When it
becomes available, you can get the PEER_AGENT_AVAILABLE from SAAgentV2.onPeerAgentsUpdated() callback.
Your application can check the identity or properties of the new Accessory Peer Agent by using the APIs in the
SAPeerAgent object, and decide whether to request a Service Connection with that Accessory Peer Agent.

@Override
protected void onPeerAgentUpdated(SAPeerAgent peerAgent, int result) {
 if(result == PEER_AGENT_AVAILABLE) {
 requestServiceConnection(peerAgent);
 } else if (result == PEER_AGENT_UNAVAILABLE) {
 // Peer Agent no longer available

NOTE. If you want to restore Service Connection, it is your application's responsibility to call SAAgentV2.findPeerAge
nts() to try to re-find the remote Accessory Peer Agent and SAAgentV2.requestServiceConnection() to make
Service Connection request again.

http://developer.android.com/reference/android/app/Service.html#onLowMemory()
http://developer.android.com/reference/android/app/Service.html#onLowMemory()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#onServiceConnectionLost(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#ERROR_FATAL
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#findPeerAgents--
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#onPeerAgentsUpdated-com.samsung.android.sdk.accessory.SAPeerAgent:A-int-
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#onFindPeerAgentsResponse-com.samsung.android.sdk.accessory.SAPeerAgent:A-int-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#PEER_AGENT_AVAILABLE
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#onPeerAgentsUpdated-com.samsung.android.sdk.accessory.SAPeerAgent:A-int-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#requestServiceConnection(com.samsung.android.sdk.accessory.SAPeerAgent)

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 45

 }
 ...
}

4.3.11.Authenticating Accessory Peer Agent

The SAAgentV2.onServiceConnectionRequested() callback can check for Accessory Peer Agent specific
information before accepting Service Connection requests. You can use the SAPeerAgent object methods for
checking specific information, such as application name or vendor ID. In addition, you can optionally authenticate the
Peer Agent by checking its key and then decide whether to accept or reject its Service Connection request.

NOTE. The authenticating Accessory Peer Agent may not work properly depending on the firmware version of
accessory device. It is recommended to upgrade accessory device firmware if possible.

@Override
protected void onServiceConnectionRequested(SAPeerAgent peerAgent) {
 // Check Peer Agent’s basic info
 if(peerAgent.getAccessory().getVendorId().equals("SAMSUNG ELECTRONICS")
 && peerAgent.getAccessory().getProductId().equals("SAMSUNG GEAR")){
 // Authenticate Peer Agent for enhanced security
 authenticatePeerAgent(peerAgent);
 } else {
 rejectServiceConnectionRequest(peerAgent);
 }
}

@Override
protected void onAuthenticationResponse(SAPeerAgent peerAgent, SAAuthenticationToken authToken, int
code) {
 ...
 // Get the certificate from context
 byte[] myAppKey = getApplicationCertificate(mContext);

 // Compare it to certificate received from remote peer.
 if (authToken.getKey().length != myAppKey.length) {
 matched = false;
 } else {
 for (int i = 0; i < authToken.getKey().length; i++) {
 if (authToken.getKey()[i] != myAppKey[i]) {
 matched = false;
 }
 }
 }
 // if identical, do further work like accept service connection request
 ...
}

NOTE. Due to platform difference, it’s necessary that Gear App creates author certificate using Android keystore.
Please refer to Appendix D. Creating Gear Author Certificate Using Android Keystore. It’s also necessary to sign
Android App with Android Keystore and Gear App with author certificate created from Android Keystore.

https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#onServiceConnectionRequested-com.samsung.android.sdk.accessory.SAPeerAgent-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 46

4.4. Using Instance in other class

4.4.1.Instantiating SAAgentV2

Multiple instance creation of an Implementation class is not allowed. If you attempt for a multiple instance creation, an
exception will occur.

To avoid this, try to get an instance using the SAAgentV2.reqeustAgent() with a RequestAgentCallback.

If it creates an instance or gets instance from static HashMap in SAAgentV2 successfully, it calls a
RequestAgentCallback.onAgentAvailable() with an SAAgentV2 instance.

If it has an error, it calls the RequestAgentCallback.onError(), then the errors can be handled as follows.

private HelloAccessoryConsumer mConsumer = null;
private SAAgentV2.RequestAgentCallback mAgentCallback = new SAAgentV2.RequestAgentCallback() {
 @Override
 public void onAgentAvailable(SAAgentV2 agent) {
 mConsumer = (HelloAccessoryConsumer)agent;
 }

 @Override
 public void onError(int errorCode, String message) {
 Log.e(TAG, "Agent initialization error: " + errorCode + ". ErrorMsg: " + message);
 switch(errorCode) {

case ERROR_CLASS_NOT_FOUND :
 // Requested Agent class is not found.
 // Verify the class name passed in requestAgent().

break;
case ERROR_CONSTRUCTOR_NOT_FOUND :

// Requested Agent class constructor is not found.
// Verify the agent class which name is passed in requestAgent() has a constructor with
Context argument.
break;

case ERROR_ CONSTRUCTOR _EXCEPTION :
// Requested Agent class constructor threw an exception.
// Check the constructor code of the class which name passed in requestAgent().
break;

case ERROR_REQUEST_IN_PROGRESS :
// Requested Agent Class is already called or being released.
// Call requestAgent() after sometime.
break;

 }
 }
};
...
@Override
protected void onCreate(Bundle savedInstanceState) {
 ...

SAAgentV2.requestAgent(getApplicationContext(),
HelloAccessoryConsumer.class.getName(), mAgentCallback);

 ...
}

https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#requestAgent-android.content.Context-java.lang.String-com.samsung.android.sdk.accessory.SAAgentV2.RequestAgentCallback-
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.RequestAgentCallback.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.RequestAgentCallback.html#onAgentAvailable-com.samsung.android.sdk.accessory.SAAgentV2-
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.RequestAgentCallback.html#onError-int-java.lang.String-

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 47

4.4.2.Cleanup

Call SAAgentV2.releaseAgent() for cleanup in Activity or other class as illustrated with following example.

@Override
protected void onDestroy() {

...
//Perform local cleanup
//call releaseAgent()
if(mConsumer != null)

mConsumer.releaseAgent();
...

}

https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#releaseAgent--

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 48

5. Accessory Message

5.1. Hello Message

Hello Message is a pseudo code example to show how to:

- Initialize SA.

- Create a SAMessage.

- Send and receive messages between Accessory Peer Agents more simply.

For more information about sample applications, please visit
http://developer.samsung.com/gear/develop/samples/companion

Hello Message is composed of two parts: Consumer and Provider.

NOTICE. Please note that the previous Gear Series before Gear S3 do not support Accessory Message feature. In
addition, it needs to use the legacy Service Connection if the application intends to send or receive heavy messages
since this feature is applicable to simple message delivery.

5.1.1.Consumer Application

Consumer application has the functionalities below:

- Creates a SAMessage in your subclass extending SAAgent or SAAgentV2.

- Sends a message to Service Provider.

- Receives success or failure result of sending a messge.

Sample codes for SAAgent

class HelloMessageConsumer extends SAAgent {

...

 void onCreate() {

 Create SA;
 try {
 Initialize SA;
 } catch (Exception e) {
 // Error Handling
 }

 Create SAMessage(this) {
 void onSent(SAPeerAgent peerAgent, int id) {
 // Success to send a message

 }

 void onError(SAPeerAgent peerAgent, int id, int errorCode) {
 // Failure to send a message
 }

 void onReceive(SAPeerAgent peerAgent, byte[] message) {

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://developer.samsung.com/gear/develop/samples/companion
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 49

 // Receive a message
 Parse(message);

}

 };

 }

 void onStart() {

 // Find Peer Agent

 FindPeerAgent();
 }

 void onFindPeerAgentsResponse(SAPeerAgent[] peerAgent, int result) {
 // Store found Peer Agent if success
 if (result == PEER_AGENT_FOUND) {
 for(SAPeerAgent peerAgent:peerAgents) {
 Cache(peerAgent);
 }
 }
 }

public int sendData(SAPeerAgent peerAgent, String value) {
 // Send a message

Create WorkerThread(
 try {

 return SAMessage.send(peerAgent, value.getBytes());
 } catch (Exception e) {
 // Error Handling

return -1;
}

);

 }

...

}

Sample codes for SAAgentV2

class HelloMessageConsumer extends SAAgentV2 {
...
 public HelloMessageConsumer(Context context) {
 super(AGENT_NAME, context);
 try {
 Initialize SA;
 } catch (Exception e) {
 // Exception handling
 }

 CreateMessage(this) {

 void onSent(SAPeerAgent peerAgent, int id) {
 // Message sent successfully
 }

 void onError(SAPeerAgent peerAgent, int id, int errorCode) {
 // Message sending failed. Handle error
 }

 void onReceive(SAPeerAgent peerAgent, byte[] message) {
 Parse(message);
 }

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 50

 };

 // Find Peer Agent

 FindPeerAgent();
 }

 void onFindPeerAgentsResponse(SAPeerAgent[] peerAgents, int result) {
 // Store found Peer Agent if success
 if (result == PEER_AGENT_FOUND) {
 for(SAPeerAgent peerAgent:peerAgents) {
 Cache(peerAgent);
 }
 }
 }

 public int sendData(SAPeerAgent peerAgent, byte[] message) {
 // Send a message
 Create WorkerThread(

 try {
 return SAMessage.send(peerAgent, value.getBytes());
 } catch (Exception e) {
 // Error Handling

return -1;
}

);
 }
...
}

5.1.2.Provider Application

Provider application has the functionalities below:

- Creates a SAMessage in your subclass extending SAAgent or SAAgentV2.

- Receives a message from Service Provider.

Sample codes for SAAgent

class HelloMessageProvider extends SAAgent {

...

 void onCreate() {

 Create SA;

 try {

 Initialize SA;

 } catch (Exception e) {

 // Error Handling

 }

Create SAMessage(this) {
 @Override
 protected void onSent(SAPeerAgent peerAgent, int id) {
 // Success to send a message

 }

 @Override
 protected void onError(SAPeerAgent peerAgent, int id, int errorCode) {

// Failure to send a message
}

 @Override
 protected void onReceive(SAPeerAgent peerAgent, byte[] message) {

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 51

// Receive a message

// Check received message

 Parse(message);

 // Create a worker thread and show message to user

 Create WorkerThread(

 Show(message);

);

}

 };

 }

 void onStart() {

 // Find Peer Agent

 FindPeerAgent();

 }

 void onFindPeerAgentsResponse(SAPeerAgent[] peerAgents, int result) {

 // Store found Peer Agent if success

 if (result == PEER_AGENT_FOUND) {
 for(SAPeerAgent peerAgent:peerAgents) {
 Cache(peerAgent);
 }
 }

 }

...

}

Sample codes for SAAgentV2

class HelloMessageProvider extends SAAgentV2 {

 public HelloMessageProvider(Context context) {
 super(AGENT_NAME, context);
 try {
 Initialize SA;
 } catch (Exception e) {
 // Exception handling
 }

 CreateMessage(this) {

 void onSent(SAPeerAgent peerAgent, int id) {
 // Message sent successfully
 }

 void onError(SAPeerAgent peerAgent, int id, int errorCode) {
 // Message sending failed. Handle error
 }

 void onReceive(SAPeerAgent peerAgent, byte[] message) {
 Parse(message);

 showMessage(message);
 }
 };
 // Find Peer Agent

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 52

 FindPeerAgent();
 }

 void onFindPeerAgentsResponse(SAPeerAgent[] peerAgents, int result) {
 if (result == PEER_AGENT_FOUND) {
 for(SAPeerAgent peerAgent:peerAgents) {
 Cache(peerAgent);
 }
 }
 }
...
}

5.2. Using the SA Class

The SA class provides the following methods:

- initialize() initializes Accessory. You need to initialize Accessory before you can use it. If the device does not
support Accessory, SsdkUnsupportedException is thrown.

- getVersionCode() gets the Accessory library version number as an integer.

- getVersionName() gets the Accessory library version name as a string.

- isFeatureEnabled() checks if the Accessory feature is available on the device.

SA sa = new SA();

try {

 sa.itialize(applicationContext) {

 boolean isFeatureEnabled = sa.isFeatureEnabled(SA.DEVICE_ACCESSORY);

} catch (final SsdkUnsupportedException e) {

// try to handle SsdkUnsupportedException

if (e.getType() == SsdkUnsupportedException.LIBRARY_NOT_INSTALLED) {

 // You should install service application first.

}

 } catch (Exception e1) {

 // Your application cannot use Accessory. Your application should work smoothly without

 // using Accessory, or you may want to notify the user and close your application

 // gracefully (release resources, stop Service threads, close UI thread, etc.)

return;

}

int versionCode = sa.getVersionCode();

String versionName = sa.getVersionName();

boolean isMessageEnabled = sa.isFeatureEnabled(SA.SERVICE_MESSAGE);

5.2.1. Using initialize()

The SA.initialize() method:

- Initializes Accessory.

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#initialize(android.content.Context)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#getVersionCode()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#getVersionName()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#isFeatureEnabled(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#initialize(android.content.Context)

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 53

- Checks if the device is a Samsung device.

- Checks if the device supports Accessory.

- Checks if Accessory libraries are installed on the device.

If Accessory fails to initialize, the SA.initialize() method throws an SsdkUnsupportedException exception. To
find out the reason for the exception, check the exception message.

void initialize(Context context) throws SsdkUnsupportedException

5.2.2. Handling SsdkUnsupportedException

If an SsdkUnsupportedException exception is shown, check the exception message type using
SsdkUnsupportedExcpetion.getType().

The following types of exception messages are defined in the SA class:

- LIBRARY_NOT_INSTALLED: The Samsung Accessory Service Framework is not installed on the device.

5.2.3. Checking the Availability of Accessory Message

The application can check if the Accessory Message feature is supported on own device with the SA.isFeatureEnab
led() method and on the remote Peer Agent with the SAPeerAgent.isFeatureEnabled(). The feature types are
defined in the SA class. The feature type is passed as a parameter when calling the SA.isFeatureEnabled() method
or calling the SAPeerAgent.isFeatureEnabled(). The method returns a Boolean value that indicates the support
for the feature on the device.

The following type and method are defined in the SA and SAPeerAgent class:

- SERVICE_MESSAGE

boolean isFeatureEnabled(int type)

5.3. Using Accessory Message

The following chapter describes how to use Accessory Message.

5.3.1. Declaring Broadcast Receiver

Communicating with the remote Peer Agent needs the broadcast receiver below. If it is not declared in the
AndroidManifest.xml file, any intent handled by Samsung Accessory Service Framework is not delivered to the
developer’s created application.

<application>

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#initialize(android.content.Context)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html#getType()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#isFeatureEnabled-int-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#isFeatureEnabled-int-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html#isFeatureEnabled-int-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#isFeatureEnabled-int-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html#isFeatureEnabled-int-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 54

...

<receiver android:name="com.samsung.android.sdk.accessory.RegisterUponInstallReceiver">

<intent-filter>

<action android:name="com.samsung.accessory.action.REGISTER_AGENT" />

</intent-filter>

</receiver>

<receiver android:name="com.samsung.android.sdk.accessory.MessageReceiver">

<intent-filter>

<action android:name="com.samsung.accessory.action.MESSAGE_RECEIVED" />

</intent-filter>

</receiver>

...

</application>

If you use Accessory Message in SAAgent, communicating with the remote Peer Agent needs the declaration of a
service in the AndroidManifest.xml. This ensures that the application is derived from the class SAAgent.

<application>

...

<service android:name="the class name that extends SAAgent" />

...

</application>

If you use Accessory Message in SAAgentV2, it needs the declaration of SAJobService and SAService in the the
AndroidManifest.xml. SAJobService is used in devices above Android O OS and SAService is used in devices below
Android O OS.

<application>

...
 <service android:name="com.samsung.android.sdk.accessory.SAJobService"
 android:permission="android.permission.BIND_JOB_SERVICE"/>

 <service android:name="com.samsung.android.sdk.accessory.SAService" />
...

</application>

NOTE. The SAAgent class extends the Android service and handles asynchronous Accessory-related intents. Its
implementation executes all of its activities in a worker thread, which means it does not overload the developer’s
created application main thread.

NOTE. The SAAgentV2 class does not extend the Android service. SAJobService (or SAService) can be executed in a
worker thread and make SAAgentV2 to handle asynchronous Accessory-related intents.

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 55

5.3.2. Defining Accessory Service Profile

Communicating with remote Peer Agent needs the declaration of descriptions about Accessory Service Profile. This is
declared in a separate file in /res/xml folder in the developer’s application project. The path of the actual XML file can
be added in the application’s AndroidManifest.xml.

For example, /res/xml/<profileName>.xml:

<application>

 ...

<meta-data android:name="AccessoryServicesLocation" android:value="/res/xml/<profileName>.xml" />

...

</application>

Its elements and attributes are described in the following table:

Element Attribute Description

application name The name that you want the Samsung Accessory Service Framework to advertise in
the Accessory eco-system. Usually the application's Android AppName is used. You
can implement multiple Service Providers and Service Consumers in one application.
In that case, declare multiple <serviceProfile> elements inside the <application>
element.

NOTE. This attribute allows up to 30 characters.

serviceProfile serviceImpl The subclass that extends SAAgent.

role The direction to serve an associated service to Accessory Peer Agents.

NOTE. The value must be either “provider” or “consumer”

name The name of your Service Provider or Service Consumer.

NOTE. This attribute allows up to 30 characters.

id The Service Profile ID of the Service Provider or Service Consumer.

NOTE. It is necessary to start with ‘/’. It then allows [0-9], [a-z], ‘_’ and ‘/’ (as
delimiter). This attribute allows up to 30 characters.

version The Service Profile specification version that your Service Provider or Service
Consumer application supports. This attribute is represented as a two-part string
with the following format: <major>.<minor>.

NOTE. The major version and minor version have a maximum value of 255.

serviceProfile

supportedTransports

transport The transports on which the Service Provider or Service Consumer is able to
operate. The Samsung Accessory Service Framework supports the
TRANSPORT_WIFI, TRANSPORT_BT, TRANSPORT_BLE, and TRANSPORT_USB
transport types. If your Service Provider or Service Consumer supports multiple
transport types, declare multiple <transports> elements.

NOTE. The current version of the Samsung Accessory Service Framework supports
TRANSPORT_BT and TRANSPORT_WIFI (only for Emulator). Other types will be
supported soon.

serviceProfile

supportedFeatures

feature The features on which the Service Provider or Service Consumer is able to operate.
The Samsung Accessory Service Framework supports the message type.
NOTE. The current version of the Samsung Accessory Service Framework supports
only message feature. Other types will be supported in the future.

Table 6: Defining Accessory Service Profile

file:///C:/SVN/document/SDK/Release/SVN/document/SDK/mySingle/AppData/Local/Microsoft/Windows/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/workspace/AppcessorySDK/doc/com/samsung/android/sdk/accessory/SAAgent.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 56

An example of Accessory Service Profile XML:

<resources>
 <application name="ProviderExample">
 <serviceProfile
 serviceImpl="com.samsung.accessory.example.providerServiceImpl"
 role="provider"
 name="ExampleService"
 id="/app/example"
 version="1.0">
 <supportedTransports>
 <transport type="TRANSPORT_BT"/>
 </supportedTransports>
 <supportedFeatures>
 <feature type="message"/>
 </supportedFeatures>

</serviceProfile>
 </application>
</resources>

When the application is installed, the Samsung Accessory Service Framework automatically registers its Accessory
Peer Agents using the information specified in your Service profile XML file. Similarly, the Accessory Peer Agents are
deregistered when the application is uninstalled. An error log is dumped if the registration process fails to register
the Accessory Service Profile implementation.

5.3.3. Finding Accessory Peer Agents

Please refer to 3.3.3.

5.3.4. Creating Message Sender

Creating a SAMessage instance

The application must have a SAAgent subclass and a SAMessage instance using SAAgent subclass and the instance
must include all implemented methods. The following example shows this implementation.

SAMessage mSAMessage = new SAMessage(this) {

@Override
 protected void onSent(SAPeerAgent peerAgent, int id) {
 // Success to send a message

}

 @Override
 protected void onError(SAPeerAgent peerAgent, int id, int errorCode) {

// Failure to send a message
}

 @Override
 protected void onReceive(SAPeerAgent peerAgent, byte[] message) {

// Receive a message
}

};

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 57

Sending a Message

To send a message, the application must decide who is the desired Accessory Peer Agent.

The Accessory Peer Agent can be obtained either by calling SAAgent.findPeerAgents() or by using the connected
peer. The application must then call SAMessage.send() on the SAMessage object. SAMessage.send() will return
integer value if it has succeeded to enqueue the message to Accessory Framework.

int id = mSAMessage.send(peerAgent, message);

If you want your data encrypted, call SAMessage.secureSend() instead of SAMessage.send().

Handling Success or Failure

Application is notified with the SAMessage.onSent() callback with the corresponding Accessory Peer Agent and the
ID which was returned when calling SAMessage.send() or SAMessage.secureSend() if it has succeeded on
sending a message. Otherwise, it is notified with the SAMessage.onError() callback about errors related with
Accessory Peer Agents and Samsung Accessory Service Framework. For detailed error types, see the API reference.

@Override
protected void onSent(SAPeerAgent peerAgent, int id) {
 // Success to send a message
}

@Override
protected void onError(SAPeerAgent peerAgent, int id, int errorCode) {

switch (errorCode){

case ERROR_PEER_AGENT_UNREACHABLE:

 // The remote Accessory Peer Agent is not

 // reachable or not alive to receive any messages.

 break;

case ERROR_PEER_AGENT_NO_RESPONSE:

 // The remote Accessory Peer Agent does not give any response

// within the timeout period.

 break;

case ERROR_PEER_AGENT_NOT_SUPPORTED:

 // The remote Accessory Peer Agent does not support message feature.

// It needs to establish legacy service connection.

 break;

case ERROR_PEER_SERVICE_NOT_SUPPORTED:

 // Samsung Accessory Service Framework on remote device does not support message feature.

// It needs to establish legacy service connection.

 break;

case ERROR_SERVICE_NOT_SUPPORTED:

 // Samsung Accessory Service Framework on this device does not support message feature.

// It needs to establish legacy service connection.

 break;

case ERROR_UNKNOWN:

 // The remote Accessory Peer Agent has some internal error which occurred

NOTE. SAMessage.send() and SAMessage.secureSend() methods have to be called from a worker thread. If you
need to do any heavy lifting or long latency work in this callback, spawn a separate thread. DO NOT invoke this method
in the main thread of the application.

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#send(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#send(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#secureSend(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#secureSend(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#send(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#send(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#secureSend(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#secureSend(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#send(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#secureSend(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#secureSend(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 58

// on the remote device.

 break;

}

...

}

If you want your data encrypted, call SAMessage.secureSend() instead of SAMessage.send().

5.3.5. Creating Message Receiver

Creating a SAMessage instance

The application must have a SAAgent subclass and a SAMessage instance using SAAgent subclass and the instance
must include all implemented methods. The following example shows this implementation.

SAMessage mSAMessage = new SAMessage(this) {

@Override
 protected void onSent(SAPeerAgent peerAgent, int id) {
 // Success to send a message

}

 @Override
 protected void onError(SAPeerAgent peerAgent, int id, int errorCode) {

// Failure to send a message
}

 @Override
 protected void onReceive(SAPeerAgent peerAgent, byte[] message) {

// Receive a message
}

};

Receiving a Message

When your application receives a message from a remote Accessory Peer Agent, it is notified with the SAMessage.on
Receive() callback. If your application cannot receive any message, please check if there is a receiver filter of
“com.samsung.accessory.action.MESSAGE_RECEIVED” in the AndroidManifest.xml file.

@Override
protected void onReceive(SAPeerAgent peerAgent, byte[] message) {

// Receive a message
String str = new String(message);
...

}

NOTE. SAMessage.send() and SAMessage.secureSend() methods have to be called from a worker thread. If you
need to do any heavy lifting or long latency work in this callback, spawn a separate thread. DO NOT invoke this method
in the main thread of the application.

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#secureSend(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#secureSend(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#send(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#onReceive-com.samsung.android.sdk.accessory.SAPeerAgent-byte:A-
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#onReceive-com.samsung.android.sdk.accessory.SAPeerAgent-byte:A-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#send(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#secureSend(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#secureSend(com.samsung.android.sdk.accessory.SAPeerAgent,%20byte[])

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 59

6. Accessory File Transfer

6.1. Hello AccessoryFileTransfer

Hello Accessory File Transfer is a pseudo code example to show how to:

- Initialize Accessory File Transfer.

- Create SAFileTransfer.

- Send a file from Sender to Receiver.

For more information about sample applications, please visit
http://developer.samsung.com/gear/develop/samples/companion

Hello Accessory File Transfer is composed of two parts: Sender and Receiver.

6.1.1.Sender Application

Sender application has the functionalities below:

- Sends a file to Receiver.

Sample codes for SAAgent

class HelloFileTransferSender extends SAAgent {
 ...
 void onCreate() {
 Create SAft;
 try {
 Initialize SAft;
 } catch (Exception e) {
 // Error Handling
 }
 Create SAFileTransfer(EventListner);
 }

 void onStart() {
 // Find Peer Agent
 FindPeerAgent();
 }

 void onFindPeerAgentsResponse(SAPeerAgent[] peerAgents, int result) {
 if (result == PEER_AGENT_FOUND) {
 for(SAPeerAgent peerAgent:peerAgents) {
 transId = Send(peerAgent, filename);
 }
 }
 }

 class EventListener() {

 void onProgressChanged(int transId, int progress) {
 // Show the progress
 Show(progress);

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html
http://developer.samsung.com/gear/develop/samples/companion

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 60

 }

 void onTransferCompleted(int transId, String fileName, int errorCode) {
 // Clean up resources if no more usage
 cleanup();
 }
 };
 ...
}

Sample codes for SAAgentV2

class HelloFileTransferSender extends SAAgentV2 {
 ...
 public HelloFileTrnasferSender(Context context){
 super(AGENT_NAME, context, SOCKET_CLASS);
 Create SAft;
 try {
 Initialize SAft;
 } catch (Exception e) {
 // Error Handling
 }

// Find Peer Agent
 FindPeerAgent();
 Create SAFileTransfer(EventListner);
 }

 void onFindPeerAgentsResponse(SAPeerAgent[] peerAgents, int result) {
 // Store found Peer Agent if success
 if (result == PEER_AGENT_FOUND) {
 for(SAPeerAgent peerAgent:peerAgents) {
 transId = Send(peerAgent, filename);
 }
 }
 }

 class EventListener() {

 void onProgressChanged(int transId, int progress) {
 // Show the progress
 Show(progress);
 }

 void onTransferCompleted(int transId, String fileName, int errorCode) {
 // Clean up resources if no more usage
 cleanup();
 }
 };
 ...
}

6.1.2.Receiver Application

Receiver application has the functionalities below:

- Receives a file from Sender.

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 61

Sample codes for SAAgent

public class HelloFileTransferReceiver extends SAAgent {
 ...
 void onCreate() {
 Create SAft;
 try {
 Initialize SAft;
 } catch (Exception e) {
 // Error Handling
 }
 }

 void onStart() {
 // Find Peer Agent
 FindPeerAgent();
 }

 void onFindPeerAgentResponse(SAPeerAgent peerAgent, int result) {
 // Store found Peer Agent if success
 if (result == PEER_AGENT_FOUND) {
 Cache(peerAgent);
 // Send a file to found Peer Agent
 Create SAFileTransfer(EventListner);
 }
 }

 class EventListener() {

 void onTransferRequested(int transId, String fileName) {
 // Receive a file from found Peer Agent
 receive(transId, fileName);
 };

 void onProgressChanged(int transId, int progress) {
 // Show the progress
 Show(progress);
 }

 void onTransferCompleted(int transId, String fileName, int errorCode) {
 // Clean up resources if no more usage
 cleanup();
 }
 };
 ...
}

Sample codes for SAAgentV2

public class HelloFileTransferReceiver extends SAAgent {
 ...
 void onCreate() {
 Create SAft;
 try {
 Initialize SAft;
 } catch (Exception e) {
 // Error Handling
 }
 }

 void onStart() {
 // Find Peer Agent

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 62

 FindPeerAgent();
 }

 void onFindPeerAgentResponse(SAPeerAgent peerAgent, int result) {
 // Store found Peer Agent if success
 if (result == PEER_AGENT_FOUND) {
 Cache(peerAgent);
 // Send a file to found Peer Agent
 Create SAFileTransfer(EventListner);
 }
 }

 class EventListener() {

 void onTransferRequested(int transId, String fileName) {
 // Receive a file from found Peer Agent
 receive(transId, fileName);
 };

 void onProgressChanged(int transId, int progress) {
 // Show the progress
 Show(progress);
 }

 void onTransferCompleted(int transId, String fileName, int errorCode) {
 // Clean up resources if no more usage
 cleanup();
 }
 };
 ...
}

6.2. Using the SAft Class

The SAft class provides the following methods:

- initialize() initializes Accessory File Transfer. You need to initialize Accessory File Transfer before you can
use it. If the device does not support Accessory, SsdkUnsupportedException is thrown.

- isFeatureEnabled() checks if the Accessory File Transfer feature is available on the device.

SAft saft = new SAft();

try {
 saft.initialize(this) {
 boolean isFeatureEnabled = saft.isFeatureEnabled(SAft.DEVICE_ACCESSORY);
} catch (final SsdkUnsupportedException e) {
 // try to handle SsdkUnsupportedException
 if (e.getType() == SsdkUnsupportedException.LIBRARY_NOT_INSTALLED) {
 // You should install service application first
 }
} catch (Exception e1) {
 /* Your application cannot use Accessory File Transfer
 * Your application should work smoothly without using Accessory File Transfer,
 * or you may want to notify the user and close your application gracefully
 * (release resources, stop Service threads, close UI thread, etc.)
 */
 return;

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAft.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAft.html#initialize(android.content.Context)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAft.html#isFeatureEnabled(int)

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 63

}

6.2.1. Using initialize()

The SAft.initialize() method:

- Initializes Accessory File Transfer.

- Checks if the device supports Accessory File Transfer.

- Checks if the Accessory libraries are installed on the device.

If Accessory fails to initialize, the SAft.initialize() method throws an SsdkUnsupportedException exception. To
find out the reason for the exception, check the exception message.

void initialize(Context context) throws SsdkUnsupportedException

6.2.2. Handling SsdkUnsupportedException

If an SsdkUnsupportedException exception is thrown, check the exception message type using
SsdkUnsupportedExcpetion.getType().

The following types of exception messages are defined in the SAft class:

- LIBRARY_NOT_INSTALLED: The Samsung Accessory Service Framework is not installed on the device.

6.2.3. Checking the Availability of Accessory File Transfer

Application can check if the Accessory feature is supported on the device with the SAft.isFeatureEnabled()
method. The feature types are defined in the SAft class. It is passed as a parameter when calling the SAft.isFeatur
eEnabled() method. The method returns a Boolean value that indicates the support for the feature on the device.

The flowing type is defined in the SAft class:

- DEVICE_ACCESSORY

boolean isFeatureEnabled(int type)

6.3. Using Accessory File Transfer

The user’s application does not need an existing service connection to use Accessory File Transfer. Both the sending
and receiving application needs an interface implemented to get the peer, and an interface implemented to receive
file transfer event updates (progress and completion). The sending application must know the peer to which it wants
to send the file. Then, the receiving application must create an Accessory File Transfer object in order to receive the

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAft.html#initialize(android.content.Context)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAft.html#initialize(android.content.Context)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/SsdkUnsupportedException.html#getType()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAft.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAft.html#isFeatureEnabled(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAft.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAft.html#isFeatureEnabled(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAft.html#isFeatureEnabled(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAft.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 64

incoming file transfer request notifications. The sending application is usually considered a ‘file provider’ and the
receiving application is considered the ‘file consumer’.

The following chapter describes how to use Accessory File Transfer

6.3.1.Creating a Sender

Setting An Event Listener

The application must have a SAAgent subclass, an implementation of the SAFileTransfer.EventListener
interface, and a SAFileTransfer instance to bind the application to Accessory File Transfer. The following example
shows this implementation.

EventListener mCallback = new EventListener() {

 @Override
 public void onProgressChanged(int transId, int progress) {
 // Indicates the progress of transfer
 }

 @Override
 public void onTransferCompleted(int transId, String fileName, int errorCode) {
 // Indicates that transfer has been finished
 }

 @Override
 public void onTransferRequested(int id, String fileName) {
 // No use in case of a file sender
 }

 @Override
 public void onCancelAllCompleted (int errorCode) {
 // No use in case of a file receiver
 }
};

SAFileTransfer mFileTransfer = new SAFileTransfer(this, mCallback);

Sending Files

To send a file, the application must know where the Accessory Peer Agent wants to send the file.

The Accessory Peer Agent can be obtained either by calling SAAgent.findPeerAgents() or by using the connected
peer. The application must then call SAFileTransfer.send() on the SAFileTransfer object.

int tx = mFileTransfer.send(mPeerAgent, fileName);

In case that the file is external,

The file name provided must have a fully qualified path for the file. The data must be stored in a publicly-visible
location, for example, on /mnt/sdcard. A unique transaction ID is returned to the application, which the application
can retain for future reference.

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#send(com.samsung.android.sdk.accessory.SAPeerAgent,%20java.lang.String)
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 65

In case that the file is internal,

Accessory File Transfer will convert the paths to URI using FileProvider. The application that will send a file from an
internal path should implement these changes. Otherwise, an IllegalArgumentException will occur while trying to
send files from an internal folder.

- Add the provider details in AndroidManafiest.xml for using content URI.

A. Use package name as the authority if FileProvider is the only ContentProvider used in the application.

android:authorities="[application’s package name]"

android:resources="[path of xml file having path information about file to be sent]"

<provider
 android:name="android.support.v4.content.FileProvider"
 android:authorities="com.samsung.android.sdk.accessory.example.filetransfer.sender"
 android:exported="false"
 android:grantUriPermissions="true" >
 <meta-data
 android:name="android.support.FILE_PROVIDER_PATHS"
 android:resource="@xml/accessoryservices" />
</provider>

B. Use the unique string appending the unique string to package name as each authority if there are multiple
ContentProviders used in the application.

android:authorities="[application’s package name.unique string]"

android:resources="[path of xml file having path information about file to be sent]"

<provider
 android:name="com.samsung.android.sdk.accessory.example.filetransfer.sender.YourProvider1"
 android:authorities="com.samsung.android.sdk.accessory.example.filetransfer.sender"
 ...
</provider>

<provider
 android:name=" com.samsung.android.sdk.accessory.example.filetransfer.sender.YourProvider2"
 android:authorities="com.samsung.android.sdk.accessory.example.filetransfer.sender.xxx"
 ...
</provider>

<provider
 android:name="android.support.v4.content.FileProvider"
 android:authorities="com.samsung.android.sdk.accessory.example.filetransfer.sender.yyy"
 android:exported="false"
 android:grantUriPermissions="true" >
 <meta-data
 android:name="android.support.FILE_PROVIDER_PATHS"
 android:resource="@xml/accessoryservices" />
</provider>

- FileProvider can only generate a context URI for files in directories that you specified beforehand. To specify a
directory, specify the storage area and path in xml using child elements of the <paths> element. The xml file
should be in the location mentioned in android:resources under the provider tag in AndroidManifest.xml
similar to what is shown above. The following is a sample xml file for paths.

<paths xmlns:android="http://schemas.androidcom/apk/res/android">
 <files-path name="my_images" path="." />

http://developer.android.com/reference/android/support/v4/content/FileProvider.html
http://developer.android.com/reference/java/lang/IllegalArgumentException.html
http://developer.android.com/reference/android/support/v4/content/FileProvider.html
http://developer.android.com/reference/android/content/ContentProvider.html
http://developer.android.com/reference/android/content/ContentProvider.html
http://developer.android.com/reference/android/support/v4/content/FileProvider.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 66

 <caches-path name="my_cache" path="." />
</paths>

NOTE. The application can send files from the internal storage directories: /data/data/<application package>/files/ and
/data/data/<application package>/cache/.

NOTICE. It should not be used to transfer sensitive or private information, since this method does not support any
security features. If the application would like to transfer sensitive or private information, it needs to implement the
encryption and decryption for security in its own application

Checking the Sending Progress

During the file transfer, progress updates are notified with the SAFileTransfer.EventListener.onProgressChang

ed() callback. Applications can update a progress bar based on the progress value received in the callback. When the

 file transfer is completed (successfully or not), the onTransferCompleted() callback is called with the appropriate er

ror values. Applications can match the error codes with the error fields declared in the SAFileTransfer class.

Cancelling the Sending File

Applications can cancel the file transfer at any time by calling SAFileTransfer.cancel(). If a file transfer is cancelle

d, the SAFileTransfer.EventListener.onTransferCompleted() callback is called with a proper error code.

mFileTransfer.cancel(transId);
...
EventListener mCallback = new EventListener() {
 ...
 @Override
 public void onTransferCompleted(int transId, String fileName, int errorCode) {
 ...
 if (errorCode == SAFileTransfer.ERROR_PEER_AGENT_REJECTED) {
 // Indicates that transfer has been cancelled or rejected.
 } else {
 ...
 }
 }
 ...
}

Sender application can cancel all file transfer request at any time by calling SAFileTransfer.cancelAll(). If a file tr

ansfer is cancelled, the onCancelAllCompleted() is called with a proper error code.

mFileTransfer.cancelAll();
...
EventListener mCallback = new EventListener() {
 ...
 @Override
 public void onCancelAllCompleted(int errorCode) {
 ...
 if (errorCode == SAFileTransfer.ERROR_NONE) {
 // Indicates that transfer has been cancelled.
 } else {
 ...

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onProgressChanged(int,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onProgressChanged(int,%20int)
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onTransferCompleted-int-java.lang.String-int-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#cancel(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onTransferCompleted(int,%20java.lang.String,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#cancelAll()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onCancelAllCompleted(int)

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 67

 }
 }
 ...
}

6.3.2.Creating a Receiver

Declaring Broadcast Receiver

Communicating with the sender needs the broadcast receiver below. This receiver is triggered when receiving a file
transfer request. If it is not added in the AndroidManifest.xml file, intents will not be delivered to the developer’s
created application.

<application>
 ...
 <receiver
android:name="com.samsung.android.sdk.accessoryfiletransfer.SAFileTransferIncomingRequestReceiver">
 <intent-filter>
 <action android:name="com.samsung.accessory.ftconnection"/>
 </intent-filter>
 </receiver>
 ...
</application>

Setting An Event Listener

The application must have a SAAgent subclass and an implementation of the SAFileTransfer.EventListener
interface and create a SAFileTransfer instance to bind the application to Accessory File Transfer. The following
example shows this implementation.

EventListener mCallback = new EventListener() {

 @Override
 public void onProgressChanged(int transId, int progress)
 // Indicates the progress of transfer
 }

 @Override
 public void onTransferCompleted(int transId, String fileName, int errorCode) {
 // Indicates that transfer has been finished
 }

 @Override
 public void onTransferRequested(int id, String fileName) {
 // No use in case of a file sender
 }

 @Override

NOTE. SAFileTransfer.cancelAll() and SAFileTransfer.EventListener.onCancelAllCompleted() are newly
added from 2.3.0. Unless you override those methods, you can get a compilation error (unimplemented methods). It’s
recommended to add those methods to your implementation.

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#cancelAll()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onCancelAllCompleted(int)

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 68

 public void onCancelAllCompleted (int errorCode) {
 // No use in case of a file receiver
 }
};

SAFileTransfer mFileTransfer = new SAFileTransfer(this, mCallback);

Receiving Files

The EventListener instance and the SAFileTransfer object are needed to enable the receiving application to
receive incoming file transfer requests. The Accessory File Transfer Service notifies the receiving application about
the incoming request with the SAFileTransfer.EventListener.onTransferRequested() callback.

The application can inform the user through a notification or pop-up about the incoming file transfer and then ask for
permission to accept or reject the incoming file transfer request.

The application must call SAFileTransfer.receive() on the SAFileTransfer object to receive the file. For exampl

e, file path to be stored is /storage/emulated/0/.

mFileTransfer.receive(transId, "/storage/emulated/0/RecevicedFile.ext");

In case that file is external,

The destination file path where the received file is stored must be a publicly available location and also a fully
qualified path. You can leave the parameter blank, in which case the file is stored in an external storage directory
under a generated file name, for example, ReceivedFile<timestamp>.ext. An IllegalArgumentException occurs if
an invalid file path or an invalid transaction ID is used.

In case that file is internal,

For receiving file in internal storage directory, the application must implement below changes or else an
IllegalArgumentException will occur while trying to receive files from an internal directory.

- Add the provider details in AndroidManafiest.xml for using content URI.

A. Use package name as the authority if FileProvider is the only ContentProvider used in the application.

android:authorities="[application’s package name]"

android:resources="[path of xml file having path information about file to be received]"

<provider
 android:name="android.support.v4.content.FileProvider"
 android:authorities="com.samsung.android.sdk.accessory.example.filetransfer.receiver"
 android:exported="false"
 android:grantUriPermissions="true" >
 <meta-data
 android:name="android.support.FILE_PROVIDER_PATHS"
 android:resource="@xml/accessoryservices" />
</provider>

B. Use the unique string appending the unique string to package name as each authority if there are multiple
ContentProviders used in the application.

 android:authorities="[application’s package name.unique string]"

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onTransferRequested(int,%20java.lang.String)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#receive(int,%20java.lang.String)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html
http://developer.android.com/reference/java/lang/IllegalArgumentException.html
http://developer.android.com/reference/java/lang/IllegalArgumentException.html
http://developer.android.com/reference/android/support/v4/content/FileProvider.html
http://developer.android.com/reference/android/content/ContentProvider.html
http://developer.android.com/reference/android/content/ContentProvider.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 69

 android:resources="[path of xml file having path information about file to be received]"

<provider
 android:name="com.samsung.android.sdk.accessory.example.filetransfer.receiver.YourProvider1"
 android:authorities="com.samsung.android.sdk.accessory.example.filetransfer.receiver"
 ...
</provider>

<provider
 android:name=" com.samsung.android.sdk.accessory.example.filetransfer.receiver.YourProvider2"
 android:authorities="com.samsung.android.sdk.accessory.example.filetransfer.receiver.xxx"
 ...
</provider>

<provider
 android:name="android.support.v4.content.FileProvider"
 android:authorities="com.samsung.android.sdk.accessory.example.filetransfer.receiver.yyy"
 android:exported="false"
 android:grantUriPermissions="true" >
 <meta-data
 android:name="android.support.FILE_PROVIDER_PATHS"
 android:resource="@xml/accessoryservices" />
</provider>

- FileProvider can only generate a context URI for files in directories that you specified beforehand. To specify a
directory, specify the storage area and path in xml using child elements of the <paths> element. The xml file
should be in the location mentioned in android:resources under the provider tag in AndroidManifest.xml
similar to what is shown above. The following is a sample xml file for paths.

<paths xmlns:android="http://schemas.androidcom/apk/res/android">
 <files-path name="my_images" path="." />
 <caches-path name="my_cache" path="." />
</paths>

Checking the Receiving Progress

The sender starts sending data only after SAFileTransfer.receive() is called.

During the file transfer, progress updates are notified with the SAFileTransfer.EventListener.onProgressChang

ed() callback. The application can update a progress bar based on the progress value received. When the file transfer

 is completed (successfully or not), the SAFileTransfer.EventListener.onTransferCompleted() callback is called

 with the requisite error code. The application can match the error code received with those defined in SAFileTrans

fer to find the exact reason for the error.

Rejecting the Receiving File

Applications can reject the file transfer receiving the incoming request with the SAFileTransfer.EventListener.o
nTransferRequested() callback by calling SAFileTransfer.reject(). If a file transfer is rejected, the
SAFileTransfer.EventListener.onTransferCompleted() is called with the
SAFileTransfer.ERROR_PEER_AGENT_REJECTED code.

mFileTransfer.reject(transId);

http://developer.android.com/reference/android/support/v4/content/FileProvider.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#receive(int,%20java.lang.String)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onProgressChanged(int,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onProgressChanged(int,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onTransferCompleted(int,%20java.lang.String,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onTransferRequested(int,%20java.lang.String)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onTransferRequested(int,%20java.lang.String)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#reject(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onTransferCompleted(int,%20java.lang.String,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#ERROR_PEER_AGENT_REJECTED

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 70

...
EventListener mCallback = new EventListener() {
...
 @Override
 public void onTransferCompleted(int transId, String fileName, int errorCode) {
 ...
 if (errorCode == SAFileTransfer.ERROR_PEER_AGENT_REJECTED) {
 // Indicates that transfer has been cancelled or rejected.
 } else {
 ...
 }
 }
 ...
};

Cancelling the receiving File

Applications can cancel the file transfer any time by calling SAFileTransfer.cancel().

If a file transfer is cancelled, the SAFileTransfer.EventListener.onTransferCompleted() is called with the SAFi

leTransfer.ERROR_PEER_AGENT_REJECTED code.

mFileTransfer.cancel(transId);
...
EventListener mCallback = new EventListener() {
...
 @Override
 public void onTransferCompleted(int transId, String fileName, int errorCode) {
 ...
 if (errorCode == SAFileTransfer.ERROR_PEER_AGENT_REJECTED) {
 // Indicates that transfer has been cancelled or rejected.
 } else {
 ...
 }
 }
 ...
};

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#cancel(int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onTransferCompleted(int,%20java.lang.String,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#ERROR_PEER_AGENT_REJECTED
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#ERROR_PEER_AGENT_REJECTED

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 71

7. Samples
There are a few sample applications provide in order to help the developers understand the use of Accessory SDK.
These sample applications can be also downloaded in the Samsung developer site.

- Hello Accessory (WEB / NATIVE)

Shows simple text interactions between Smart device and Remote device using Accessory SDK.

- Gallery (WEB / NATIVE)

Shows simple image exchange interactions between Smart device and Remote device using Accessory SDK.

- File Transfer (WEB / NATIVE)

Shows simple file transfer between Smart device and Remote device using Accessory SDK.

- Security Enabled (WEB / NATIVE)

Shows simple encrypted text interactions between Smart device and Remote device using secured APIs of
Accessory SDK.

- Multiplicity (WEB / NATIVE)

Shows how to communicate a Provider application with multiple Consumer applications using Accessory SDK.

- Weather (HYBRID-WEB+NATIVE WIDGET)

Shows how to communicate Provider applications with Consumer Web application and Widget application
using Accessory SDK.

- Hello Message (WEB / NATIVE)

Shows simple text interactions between Smart device and Remote device using Accessory Message of
Accessory SDK.

NOTE. Hello Accessory, Hello Message, File Transfer samples are implemented in two modules. One is the sample
codes for SAAgent and the other is for SAAgentV2. You can build each module separately in Android Studio.

https://developer.samsung.com/gear/develop/samples/companion/hello-web
https://developer.samsung.com/gear/develop/samples/companion/hello-web
https://developer.samsung.com/gear/develop/samples/companion/hello-native
https://developer.samsung.com/gear/develop/samples/companion/gallery-web
https://developer.samsung.com/gear/develop/samples/companion/gallery-native
https://developer.samsung.com/gear/develop/samples/companion/file-web
https://developer.samsung.com/gear/develop/samples/companion/file-native
https://developer.samsung.com/gear/develop/samples/companion/security-web
https://developer.samsung.com/gear/develop/samples/companion/security-native
https://developer.samsung.com/gear/develop/samples/companion/multi-web
https://developer.samsung.com/gear/develop/samples/companion/multi-native
https://developer.samsung.com/gear/develop/samples/companion/weather-hybrid
https://developer.samsung.com/gear/develop/samples/companion/hello-message-web
https://developer.samsung.com/gear/develop/samples/companion/hello-message-native

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 72

7.1. Hello Accessory

The Hello Accessory sample application displays simple text interactions between Smart device and Remote device
using Accessory SDK. This sample application is following a Gear companion type application and is provided in two
types according to location of provider and consumer application.

Provider (Android) and Consumer (Gear)

HelloAccessory
Provider

 Initiates service connection request

 Accepts a receiving service connection request

HelloAccessory
Consumer

 Sends command

 Replies to it with the current time stamp

 Closes service connection

 Replies to closure request

Figure 5: Hello Accessory - Provider (Android) and Consumer (Gear)

This type of sample application has two parts:

- Provider application

Works in Smart device, but has no UI.

Accepts a receiving a service connection request from remote Accessory Peer Agent in Remote device (Gear).

Replies to a receiving command from remote Accessory Peer Agent in Remote device (Gear) with current time
stamp.

- Consumer application

Works in Remote device (Gear) and has UI.

Initiates service connection request and sends command to peer Accessory Agent in Smart device.

Shows a received response to user.

Provider (Gear) and Consumer (Android)

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 73

HelloAccessory
Provider

Initiates service connection request

Accepts a receiving service connection request

HelloAccessory
Consumer

Sends command

Reply it with the current time stamp

 Closes service connection

 Replies to closure request

 Figure 6: Hello Accessory - Provider (Gear) and Consumer (Android)

This sample application has two parts:

- Provider application

Works in Remote device (Gear) and has UI.

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 74

Accepts a receiving a service connection request from remote Accessory Peer Agent in Smart device.

Replies to a receiving command from remote Accessory Peer Agent in Smart device with current time stamp.

- Consumer application

Works in Smart device and has UI.

Initiates service connection request and sends command to remote Accessory Peer Agent in Remote device
(Gear).

Shows a received response to user.

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 75

7.2. Gallery

Gallery sample application displays simple image exchange interactions between Smart device and Remote device
using Accessory SDK. This sample application is following a Gear companion type application and is provided in two
types according to location of provider and consumer application.

Provider (Android) and Consumer (Gear)

GalleryProvider

 Initiates service connection request

 Accepts a receiving service connection request

Gallery
Consumer

 Sends command to fetch image list

 Replies to it with list extracted from application

Sends command to fetch image itself

Replies to it

Figure 7: Gallery - Provider (Android) and Consumer (Gear)

This sample application has two parts:

- Provider application

Works in Smart device and has no UI.

Accepts a receiving a service connection request from remote Accessory Peer Agent in Remote device (Gear).

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 76

Replies to a receiving command to fetch image list from remote Accessory Peer Agent in Remote device (Gear)
with list extracted from application.

Replies to a receiving command to fetch images from remote Accessory Peer Agent in Remote device (Gear)
with actual images after encoding it as BASE64.

- Consumer application

Works in Remote device (Gear) and has UI.

Initiates service connection request and send commands to remote Accessory Peer Agent in Smart device.

When receiving a response, decodes BASE64 encoded images and shows it to user.

Provider (Gear) and Consumer (Android)

GalleryProvider

 Initiates service connection request

 Accepts a receiving service connection request

Gallery
Consumer

 Sends command to fetch image list

 Replies to it with list extracted from application

 Sends command to fetch image itself

 Replies to it

Figure 8: Gallery - Provider (Gear) and Consumer (Android)

This sample application has two parts:

- Provider application

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 77

Works in Remote device (Gear) and has UI.

Accepts a receiving a service connection request from remote Accessory Peer Agent in Smart device.

Replies to a receiving command to fetch image list from remote Accessory Peer Agent in Smart device with list
extracted from Gear application.

Replies to a receiving command to fetch images from remote Accessory Peer Agent in Smart device with
actual images after encoding it as BASE64.

- Consumer application

Works in Smart device and has UI.

Initiates service connection request and send commands to remote Accessory Peer Agent in Remote device
(Gear).

When receiving a response, decodes BASE64 encoded images and shows it to user.

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 78

7.3. File Transfer

File Transfer sample application displays file exchange interactions between the Smart device and the Remote device
using Accessory File Transfer SDK. This sample application is following a Gear companion type application and is
provided in two types according to location of sender and receiver application.

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 79

Sender (Android) and Receiver (Gear)

FileTransfer
Sender

 Initiates service connection request

 Accepts a receiving service connection request

FileTransfser
Receiver

 Sends a fi le

 Accepts a receiving command to push a file

Transferring file

Figure 9: File Transfer - Sender (Android) and Receiver (Gear)

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 80

This sample application has two parts:

- Sender application

Works in Smart device and has UI.

Sends files to remote Accessory Peer Agent in Remote device (Gear).

- Receiver application

Works in Remote device (Gear) and has UI.

Accepts or rejects a receiving command to push file from remote Accessory Peer Agent in Smart device.

Receiving file from remote Accessory Peer Agent in Smart device.

NOTE. Provider application does not have any file to be sent. It’s necessary to push file named src.aaa into Smart
device before clicking Send button

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 81

Sender (Gear) and Receiver (Android)

FileTransfer
Receiver

 Initiates service connection request

 Accepts a receiving service connection request

FileTransfer
Sender

 Sends a fi le

 Accepts a receiving command to push a file

Transferring file

Figure 10: File Transfer - Sender (Gear) and Receiver (Android)

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 82

This sample application has two parts:

- Sender application

Works in Remote device (Gear) and has UI.

Sends files to remote Accessory Peer Agent in Smart device.

- Receiver application

Works in Smart device and has UI.

Accepts or rejects a receiving command to push file from remote Accessory Peer Agent in Remote device
(Gear).

Receiving file from remote Accessory Peer Agent in Remote device (Gear).

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 83

7.4. Security Enabled

Security enabled sample application displays simple text interactions between Smart device and Remote device using
secured APIs of Accessory SDK. This sample application is following a Gear companion type application and is
provided in two types according to location of provider and consumer application.

Provider (Android) and Consumer (Gear)

Secured
Provider

 Initiates service connection request

 Accepts a receiving service connection request Secured
Consumer Sends command with encrypted data

 Replies to it with the encypted current time stamp

 Closes service connection

 Replies to closure request

 Requests authentication of Peer Agent

 Replies to it with authenticated certificate

Check the certificate from Peer Agent

Figure 11: Security Enabled - Provider (Android) and Consumer (Gear)

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 84

This type of sample application has two parts:

- Provider application

Works in Smart device, but has no UI.

Authenticates a remote Accessory Peer Agent in Remote device (Gear).

Accepts a receiving a service connection request from remote Accessory Peer Agent in Remote device (Gear).

Replies to a receiving command from remote Accessory Peer Agent in Remote device (Gear) with encrypted
current time stamp.

- Consumer application

Works in Remote device (Gear) and has UI.

Initiates service connection request and sends command to peer Accessory Agent in Smart device.

Shows a received response to user.

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 85

Provider (Gear) and Consumer (Android)

Secured
Consumer

 Initiates service connection request

 Accepts a receiving service connection request

Secured
Provider

 Sends command with encrypted data

 Replies to it with the encypted current time stamp

 Closes service connection

 Replies to closure request

 Requests authentication of Peer Agent

 Replies to it with authenticated certificate

Check the certificate from Peer Agent

Figure 12: Security Enabled - Provider (Gear) and Consumer (Android)

This sample application has two parts:

- Provider application

Works in Remote device (Gear) and has UI.

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 86

Authenticates a remote Accessory Peer Agent in Smart device.

Accepts a receiving a service connection request from remote Accessory Peer Agent in Smart device.

Replies to a receiving command from remote Accessory Peer Agent in Smart device with encrypted current
time stamp.

- Consumer application

Works in Smart device and has UI.

Initiates service connection request and sends command to remote Accessory Peer Agent in Remote device
(Gear).

Shows a received response to user.

NOTE. Due to platform difference, it’s necessary that Gear App creates author certificate using Android keystore.
Please refer to Appendix D. Creating Gear Author Certificate Using Android Keystore. It’s also necessary to sign
Android App with Android Keystore and Gear App with author certificate created from Android Keystore.

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 87

7.5. Multiplicity

Multiplicity sample application shows how to communicate a Provider application with multiple Consumer
applications using Accessory SDK as one of possible multiplicity combinations. This sample application is following a
Gear companion type application and is provided in two types according to location of provider and consumer
application.

Provider (Android) and Consumer (Gear)

P1 P2 C1 C2

 Initiates service connection request

 Initiates service connection request

 Accepts a receiving service connection request

 Accepts a receiving service connection request

 Sends command
 Replies to it with the current time stamp

 Sends command
 Replies to it with the current time stamp

...

.

Figure 13: Multiplicity - Provider (Android) and Consumer (Gear)

This type of sample application has two parts:

- Provider application

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 88

Works in Smart device, but has no UI.

Includes two Providers having different Accessory Service Profile.

Accepts a receiving a service connection request from remote Accessory Peer Agents in Remote device (Gear)
independently.

Replies to a receiving command from remote Accessory Peer Agents in Remote device (Gear) independently.

- Consumer application

Works in Remote device (Gear) and has UI.

Initiates service connection request and sends command to peer Accessory Agents in Smart device
independently.

Shows a received response to user independently.

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 89

Provider (Gear) and Consumer (Android)

C1 C2 P1 P2

 Initiates service connection request

 Initiates service connection request

 Accepts a receiving service connection request

 Accepts a receiving service connection request

 Sends command
 Replies to it with the current time stamp

 Sends command
 Replies to it with the current time stamp

....

 Sends command
 Replies to it with the current time stamp

Figure 14: Multiplicity - Provider (Gear) and Consumer (Android)

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 90

This sample application has two parts:

- Provider application

Works in Remote device (Gear), but has UI.

Includes two Providers having different Accessory Service Profile.

Accepts a receiving a service connection request from remote Accessory Peer Agents in Smart device
independently.

Replies to a receiving command from remote Accessory Peer Agents in Smart device independently.

- Consumer application

Works in Smart device and has UI.

Initiates service connection request and sends command to peer Accessory Agents in Remote device (Gear)
independently.

Shows a received response to user independently.

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 91

7.6. Weather

The Weather sample application is a companion type application that shows how multiple Provider applications can
communicate with multiple Consumer applications (WebApp and Widget) using the Accessory SDK

Provider (Android) and Consumer (Gear)

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 92

P1 P2 C1 C2

 Initiates service connection request

 Initiates a service connection request

 Accepts a receiving service connection request

 Accepts a receiving service connection request

 Sends "request" command to add city

 Replies with weather information about selected city

..

.

.

Select WeatherWebApp in menu

 Sends "request" command to get the weather info. of random city

 Replies with weather information about selected city

P1 ProviderForWebApp P2 ProviderForWidget C1 WeatherWebApp C2 WeatherWidget

Figure 15: Weather - Provider (Gear) and Consumer (Android)

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 93

This sample application has three parts:

- WeatherProvider

 Works in Host device and has UI

 Includes two Providers having different Accessory Service Profiles

 Accepts a receiving service connection request from Gear device independently

 Replies to a receiving command from Gear device independently

- WeatherWebApp

 Works in Gear device and has UI

 Initiates a service connection request and sends commands to Host device independently

 Shows a received response to user independently

 Shows the weather information of random city among stored cities

- WeatherWidget

 Works in Gear device and has UI

 Initiates a service connection request and sends commands to Host device independently

 Shows a received response to the user independently

 Shows the weather information of selected cities

 Shows to user the screen to add the city

NOTE. Please refer to the link below to package a hybrid application.
https://developer.tizen.org/community/tip-tech/packaging-hybrid-application

https://developer.tizen.org/community/tip-tech/packaging-hybrid-application

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 94

7.7. Hello Message

The Hello Message sample application displays simple text interactions between Smart device and Remote device
using Accessory SDK. This sample application is following a Gear companion type application and is provided in two
types according to location of provider and consumer application.

Provider (Android) and Consumer (Gear)

HelloMessage
Provider

 Initiates findPeerAgent

HelloMessage
Consumer

 Sends command

 Replies to it with the current time stamp

Figure 16: Hello Message - Provider (Android) and Consumer (Gear)

This type of sample application has two parts:

- Provider application

Works in Smart device, but has no UI.

Replies to a receiving command from remote Accessory Peer Agent in Remote device (Gear) with current time
stamp.

- Consumer application

Works in Remote device (Gear) and has UI.

Sends command to peer Accessory Agent in Smart device.

Shows a received response to user.

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 95

Provider (Gear) and Consumer (Android)

HelloAccessory
Provider

Initiates findPeerAgent

HelloAccessory
Consumer

Sends command

Reply to it with the current time stamp

Figure 17: Hello Message - Provider (Gear) and Consumer (Android)

This sample application has two parts:

- Provider application

Works in Remote device (Gear) and has UI.

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 96

Replies to a receiving command from remote Accessory Peer Agent in Smart device with current time stamp.

- Consumer application

Works in Smart device and has UI.

Sends command to remote Accessory Peer Agent in Remote device (Gear).

Shows a received response to user.

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 97

8. Tools
The Accessory SDK provides tools for its application development.

8.1. Emulator

This is used to develop SAMSUNG GEAR applications using GEAR IDE without actual devices

Setting up the Test Environment

For preparing the Accessory test environment with GEAR IDE, download and install Samsung GEAR Manager into
your Smart device at first. After that, find Application_for_Emulator.zip, which includes the necessary file in tools
folder in SDK. After extracting zipped file, you can find the following file: SAccessoryService_Emul.apk . And then
install it on your Smart device.

adb install –r SAccessoryService_Emul.apk

NOTE. Even if Samsung Accessory Service was already installed, install this file. Below figure shows the correct
installation status for emulator.

Figure 18: Install Application for Emulator

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 98

After installing that file is done, reboot the Smart device and then run Emulator for Samsung Accessory application.

Setting up the connection to GEAR IDE:

1. Connect the Smart device and PC via USB.

2. Open the terminal (or the command window in Windows®).

3. Execute the command below:

adb –d forward tcp:8230 tcp:8230

4. Run Emulator for Samsung Accessory application in the Smart device.

5. Turn on Wi-Fi or Mobile Network of Smart device

6. In the Tizen Studio, run the Emulator Manager and create a new virtual machine.

7. Run the virtual machine of GEAR IDE.

The application’s ‘Disconnected’ text is changed to ‘Connected’, showing that the connection through the SAP
server has succeeded. If the ‘Disconnected’ text does not change, restart the emulator with the hardware key
or the sdb shell command below (DO NOT use the sdb shell command reboot)

shutdown –r now

or enter below sdb shell command (the command requires root authority).

killall sapd

NOTE. Prior to trying the connection, make sure the following are ready: Installing the Android Debug Bridge (ADB),
setting up the path of ADB into System Variables for utilizing it in command window, installing the GEAR IDE and
running the GEAR IDE.

Cleaning Up the Test Environment

For returning the Accessory test environment to one for the actual GEAR devices, uninstall the existing application for

Emulator: Samsung Accessory Service in your Smart device. Then, launch the Samsung Gear Manager.

NOTE. Failure to uninstall that application for Emulator could result for it not to work properly on communicating with
the actual GEAR devices.

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 99

Appendix A. Programming Tips

A.1. Using File Transfer

It’s helpful to remember the following tips when implementing file transfers:

- Accessory File Transfer Service maintains its own queue for all file sending operations. Individual applications
need not and must not maintain their own queues to control file transfer. All SAFileTransfer.send() calls are
queued and serviced sequentially, even when they came from multiple user applications.

- There is a timeout of 10 seconds when the sending application sends the file transfer request to the receiving
application. If the receiver does not accept or reject the file transfer within that time, it is cancelled and an error
code is thrown on the sender side through the SAFileTransfer.EventListener.onTransferCompleted()
callback. This is also the case when the application forgets to register an incoming file transfer request broadcast
receiver or to call SAFileTransfer.receive().

- Accessory File Transfer Service checks whether there is enough space on the receiving device to receive the
incoming file. If not, it rejects the file transfer automatically without informing the receiving application.

- Accessory File Transfer Service checks whether there is already a file with the same name present in the location
provided. If there is, it appends a timestamp to the given file name. If no file path is provided, the file is stored in
the external storage directory under a generated file name.

- In the current Accessory File Transfer Service implementation, files can be transferred with or without a service
connection between user applications. This is different from the previous implementation, where a service
connection was necessary.

- It is mandatory to implement the EventListener interface for file transfer updates.

- If you have multiple SAAgent implementations in your application, all using Accessory File Transfer, each one
must create its own SAFileTransfer object. On the receiver side, all the agents must be registered. Accessory
File Transfer SDK resolves the intended SAAgent implementation for every incoming file transfer request and
notifies it with its specific SAFileTransfer.EventListener.onTransferRequested() callback.

- There is one binding to Accessory File Transfer per application, regardless of the number of SAAgent
implementations in the application.

- SAFileTransferIncomingRequestReceiver must be declared in the receiving application’s manifest.

- On the receiver side, one SAAgent implementation must maintain only a single SAFileTransfer object in its
lifetime. If multiple instances are created, the app will receive the
SAFileTransfer.EventListener.onTransferRequested() callback for every registered instance during an
incoming file transfer request. A suggested failsafe is to call SAFileTransfer.close() and then set the
SAFileTransfer object to null in the onDestroy() of the SAAgent implementation.

- SAFileTransfer.close() API should be called by the application only when the application has no use of File
Transfer Service. Once the API is called, the application won’t be able to receive or send files until it creates a
new SAFileTransfer instance. Application should make sure all the ongoing and pending requests are
completed before calling SAFileTransfer.close() else a RuntimeException exception will be thrown.

- Accessory File Transfer is using the package name as the default authority for FileProvider. If application
defines provider only for using File Transfer Content URI, it can continue to use the same. For applications with
multiple providers, they can declare their authority for File Provider with different strings like adding some extra
string in the end of package name.

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#send(com.samsung.android.sdk.accessory.SAPeerAgent,%20java.lang.String)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onTransferCompleted(int,%20java.lang.String,%20int)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#receive(int,%20java.lang.String)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onTransferRequested(int,%20java.lang.String)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.EventListener.html#onTransferRequested(int,%20java.lang.String)
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#close()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#close()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessoryfiletransfer/SAFileTransfer.html#close()
http://developer.android.com/reference/java/lang/RuntimeException.html
http://developer.android.com/reference/android/support/v4/content/FileProvider.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 100

A.2. Validating Accessory Service Profile XML

Validating the defined Accessory Service Profile lowers the chances of registration failure by wrong Accessory Service
Profile description. The Samsung Accessory Service Framework provides two kinds of validating methods: Document
Type Definition (DTD) Schema and XML Schema.

A.1.1. DTD

The following code snippet shows the Accessory Service Profile DTD file, accessoryservices.dtd.

<!DOCTYPE resources [
 <!ELEMENT resources (application)>
 <!ELEMENT application (serviceProfile)+>
 <!ATTLIST application name CDATA #REQUIRED>
 <!ELEMENT serviceProfile (supportedTransports, serviceChannel+) >
 <!ATTLIST application xmlns:android CDATA #IMPLIED>
 <!ATTLIST serviceProfile xmlns:android CDATA #IMPLIED>
 <!ATTLIST serviceProfile serviceImpl CDATA #REQUIRED>
 <!ATTLIST serviceProfile role (provider | consumer) #REQUIRED>
 <!ATTLIST serviceProfile name CDATA #REQUIRED>
 <!ATTLIST serviceProfile id CDATA #REQUIRED>
 <!ATTLIST serviceProfile version CDATA #REQUIRED>
 <!ATTLIST serviceProfile serviceLimit
 (ANY | ONE_ACCESSORY | ONE_PEERAGENT | any | one_peeragent | one_accessory) #IMPLIED>
 <!ATTLIST serviceProfile serviceTimeout CDATA #IMPLIED>
 <!ELEMENT supportedTransports (transport)+>
 <!ATTLIST supportedTransports xmlns:android CDATA #IMPLIED>
 <!ELEMENT transport EMPTY>
 <!ATTLIST transport xmlns:android CDATA #IMPLIED>
 <!ATTLIST transport type (TRANSPORT_WIFI | TRANSPORT_BT | TRANSPORT_BLE | TRANSPORT_USB |
transport_wifi | transport_bt | transport_ble | transport_usb) #REQUIRED>
 <!ELEMENT serviceChannel EMPTY>
 <!ATTLIST serviceChannel xmlns:android CDATA #IMPLIED>
 <!ATTLIST serviceChannel id CDATA #REQUIRED>
 <!ATTLIST serviceChannel dataRate (LOW | HIGH | low | high) #REQUIRED>
 <!ATTLIST serviceChannel priority (LOW | MEDIUM | HIGH | low | medium | high) #REQUIRED>
 <!ATTLIST serviceChannel reliability (ENABLE | DISABLE | enable | disable) #REQUIRED>
]>

A.1.2. XML Schema

The following code snippet shows the Accessory Service Profile XML Schema file, accessoryservices.xsd.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <xs:element name="resources">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="application" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="application">
 <xs:complexType>
 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 <xs:element ref="serviceProfile" />
 </xs:sequence>

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 101

 <xs:attribute name="name" type="xs:normalizedString" use="required" />
 </xs:complexType>
 </xs:element>
 <xs:element name="serviceProfile">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="supportedTransports" />
 <xs:element minOccurs="1" maxOccurs="unbounded" ref="serviceChannel" />
 </xs:sequence>
 <xs:attribute name="serviceImpl" type="xs:normalizedString" use="required" />
 <xs:attribute name="role" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="provider" />
 <xs:enumeration value="consumer" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="name" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:normalizedString">
 <xs:minLength value="1" />
 <xs:maxLength value="30" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="id" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:normalizedString">
 <xs:minLength value="1" />
 <xs:maxLength value="30" />
 <xs:pattern value="\/[a-z0-9_]+(\/([a-z0-9_])+)*" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="version" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:normalizedString">
 <xs:minLength value="3" />
 <xs:maxLength value="5" />
 <xs:pattern value="[1-9]?[0-9][.][0-9]?[0-9]" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="serviceLimit" use="optional" default="any">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="ANY" />
 <xs:enumeration value="ONE_ACCESSORY" />
 <xs:enumeration value="ONE_PEERAGENT" />
 <xs:enumeration value="any" />
 <xs:enumeration value="one_accessory" />
 <xs:enumeration value="one_peeragent" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="serviceTimeout" use="optional" default="0">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0" />
 <xs:maxInclusive value="300" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 102

 </xs:element>
 <xs:element name="supportedTransports">
 <xs:complexType>
 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 <xs:element ref="transport" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="transport">
 <xs:complexType>
 <xs:attribute name="type" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="TRANSPORT_WIFI" />
 <xs:enumeration value="TRANSPORT_BT" />
 <xs:enumeration value="TRANSPORT_BLE" />
 <xs:enumeration value="TRANSPORT_USB" />
 <xs:enumeration value="transport_wifi" />
 <xs:enumeration value="transport_bt" />
 <xs:enumeration value="transport_ble" />
 <xs:enumeration value="transport_usb" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:element name="serviceChannel">
 <xs:complexType>
 <xs:attribute name="id" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="1" />
 <xs:maxInclusive value="9999" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="dataRate" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="LOW" />
 <xs:enumeration value="HIGH" />
 <xs:enumeration value="low" />
 <xs:enumeration value="high" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="priority" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="LOW" />
 <xs:enumeration value="MEDIUM" />
 <xs:enumeration value="HIGH" />
 <xs:enumeration value="low" />
 <xs:enumeration value="medium" />
 <xs:enumeration value="high" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="reliability" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="ENABLE" />
 <xs:enumeration value="DISABLE" />
 <xs:enumeration value="enable" />
 <xs:enumeration value="disable" />

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 103

 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
</xs:schema>

A.1.3. Procedure

Before validating an Accessory Service Profile description, add a reference to the DTD rules to the topmost part of
your Accessory Service Profile XML file, accessoryservices.dtd:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE resources SYSTEM "accessoryservices.dtd">
<resources>
 <application name= ...
</resources>

You can also choose to add a reference to the XML Schema to the topmost part of your Accessory Service Profile XML
file, accessoryservices.xsd:

<?xml version="1.0" encoding="UTF-8"?>
<resources xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="accessoryservices.xsd">
 <application name= ...
</resources>

Using the Eclipse IDE, on the toolbar

- Click Window > Preferences and select XML > XML files -> Validation in the left pane.

- Set options No grammar specified and Missing root element to Ignore.

- Check Enable markup validation.

- Click Apply and OK.

When you build your application, Eclipse validates the Accessory Service Profile XML file to check whether the XML
file follows the Samsung Accessory Service Framework DTD. You can also validate the XML any time by right-clicking
on the XML file and selecting Validate.

Note. Validating Accessory Service Profile description using XML Schema is more accurate than using DTD.

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 104

A.1.4. DTD for supporting Accessory Message

The following code snippet shows the Accessory Service Profile DTD file for Accessory Message.

<!DOCTYPE resources [
 <!ELEMENT resources (application)>
 <!ELEMENT application (serviceProfile)+>
 <!ATTLIST application name CDATA #REQUIRED>
 <!ELEMENT serviceProfile (supportedTransports, serviceChannel*, supportedFeatures*) >
 <!ATTLIST application xmlns:android CDATA #IMPLIED>
 <!ATTLIST serviceProfile xmlns:android CDATA #IMPLIED>
 <!ATTLIST serviceProfile serviceImpl CDATA #REQUIRED>
 <!ATTLIST serviceProfile role (PROVIDER | CONSUMER | provider | consumer) #REQUIRED>
 <!ATTLIST serviceProfile name CDATA #REQUIRED>
 <!ATTLIST serviceProfile id CDATA #REQUIRED>
 <!ATTLIST serviceProfile version CDATA #REQUIRED>
 <!ATTLIST serviceProfile serviceLimit (ANY | ONE_ACCESSORY | ONE_PEERAGENT | any | one_accessory |
one_peeragent) #IMPLIED>
 <!ATTLIST serviceProfile serviceTimeout CDATA #IMPLIED>
 <!ELEMENT supportedTransports (transport)+>
 <!ATTLIST supportedTransports xmlns:android CDATA #IMPLIED>
 <!ELEMENT transport EMPTY>
 <!ATTLIST transport xmlns:android CDATA #IMPLIED>
 <!ATTLIST transport type (TRANSPORT_WIFI | TRANSPORT_BT | TRANSPORT_BLE | TRANSPORT_USB |
transport_wifi | transport_bt | transport_ble | transport_usb) #REQUIRED>
 <!ELEMENT serviceChannel EMPTY>
 <!ATTLIST serviceChannel xmlns:android CDATA #IMPLIED>
 <!ATTLIST serviceChannel id CDATA #REQUIRED>
 <!ATTLIST serviceChannel dataRate (LOW | HIGH | low | high) #REQUIRED>
 <!ATTLIST serviceChannel priority (LOW | MEDIUM | HIGH | low | medium | high) #REQUIRED>
 <!ATTLIST serviceChannel reliability (ENABLE | DISABLE | enable | disable) #REQUIRED>
 <!ELEMENT supportedFeatures (feature)+>
 <!ATTLIST supportedFeatures xmlns:android CDATA #IMPLIED>
 <!ELEMENT feature EMPTY>
 <!ATTLIST feature xmlns:android CDATA #IMPLIED>
 <!ATTLIST feature type (message) #REQUIRED>
]>

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 105

A.3. JAVA Reflection Construction

An Application implements a subclass of SASocket to send and receive data over an established Service Connection.
Register your SASocket implementation with SAAgent by passing the name and the derived concrete SASocket
subclass as parameters to the SAAgent constructor for Java Reflection construction.

public HelloAccessoryService() {
 // HelloAccessoryService extends SAAgent
 // HelloAccessoryServiceConnection extends SASocket
 super("HelloAccessoryService", HelloAccessoryServiceConnection.class);
}

An Application also needs to implement the SASocket subclass constructor for Java Reflection construction. The
following example illustrates the implementation.

public HelloAccessoryServiceConnection() {
 // HelloAccessoryServiceConnection extends SASocket
 // name of the subclass extends SASocket
 super(HelloAccessoryServiceConnection.class.getName())
}

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 106

A.4. Obfuscating The Application Using ProGuard

When you build your application in release mode, you must add -keep lines in the ProGuard configuration file of your
application to prevent ProGuard from renaming your SAAgent, SAAgentV2 and SASocket subclasses. (If you use
SAAgentV2, please add SAJobService and SAService to the prevent list.) ProGuard is a tool integrated into the Android
build system that obfuscates the code by renaming classes and methods. It’s highly recommended that you read the
ProGuard Manual for more information.

When running ProGuard as needed by the application, please take note of the following:

If you have been using Android Studio,

1. Upgrade Android Studio or Eclipse with Android Developer Tools (ADT) to latest if possible.
2. Open build.gradle file and change lines to enable option as shown below.

android {

 buildTypes {
 release {
 minifyEnabled true
 proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'
 }
 }
 ...
}

3. Add the following lines to proguard-rules.pro to exclude Accessory SDK for ProGuard.

-keepclassmembers class com.samsung.** { *; }

-keep class com.samsung.** { *; }

-dontwarn com.samsung.**

4. If you extend SASocket, create a new java file for creating class to extend SASocket. DO NOT use inner class
to extend SASocket. To avoid modifications in the inner class, add the following line.

-keepattributes InnerClasses

5. Application needs to check these lines and its ProGuard configuration when using Accessory SDK as shown
below.

-keepclassmembers class <Application’s SASocket or SAAgent or SAAgentV2 extended class>.**
{ *; }

-keep class <Application’s SASocket or SAAgent or SAAgentV2 extended class>** { *; }

If you have been using Eclipse with Android Developer Tools (ADT)

1. Upgrade Eclipse with Android Developer Tools (ADT) to latest.
2. Open project.properties file and change lines to enable option as shown below.

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html
http://developer.android.com/tools/help/proguard.html
http://stuff.mit.edu/afs/sipb/project/android/sdk/android-sdk-linux/tools/proguard/docs/index.html#manual/introduction.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 107

...

proguard.config=${sdk.dir}/tools/proguard/proguard-android.txt:proguard-project.txt

...

3. Add the following lines to proguard-project.txt to exclude Accessory SDK for ProGuard.

-keepclassmembers class com.samsung.** { *; }
-keep class com.samsung.** { *; }
-dontwarn com.samsung.**

4. If you extend SASocket, create a new java file for creating class to extend SASocket. DO NOT use inner class
to extend SASocket. To avoid modifications in the inner class, add the following line.

-keepattributes InnerClasses

5. Application needs to check these lines and its ProGuard configuration when using Accessory SDK as shown
below.

-keepclassmembers class <Application’s SASocket or SAAgent or SAAgentV2 extended class>.**
{ *; }
-keep class <Application’s SASocket or SAAgent or SAAgentV2 extended class>** { *; }

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 108

A.5. Running SAAgent In Sub-Process

Applications may choose to run SAAgent service implementation in a separate sub-process using android:process
attribute. This allows the service to keep on running even if the main process has been killed. The name assigned to
this attribute begins with a colon(‘:’).

<application>
 ...
 <service android:name="com.samsung.android.sdk.accessory.sample" android:process=":remote” />
 ...
</application>

In such case, it is also necessary to export the BroadcastReceivers in the same sub-process to avoid creating multiple
bindings to Samsung Accessory Service Framework.

<application>
 ...
 <receiver
android:name="com.samsung.android.sdk.accessory.ServiceConnectionIndicationBroadcastReceiver"
 android:process=":remote" />
 <intent-filter>
 <action android:name="com.samsung.accessory.action.SERVICE_CONNECTION_REQUESTED"/>
 </intent-filter>
 </receiver>
 <receiver android:name="com.samsung.android.sdk.accessory.RegisterUponInstallReceiver"
 android:process=":remote" />
 <intent-filter>
 <action android:name="com.samsung.accessory.action.REGISTER_AGENT"/>
 </intent-filter>
 </receiver>
 ...
</application>

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 109

Appendix B. SDK Migration

B.1. 2.2.2 to 2.3.0 or above

B.1.1. New Changes

B.1.1.1. Intent Action Changes

Version Intent Action Name

2.2.2 or below android.accessory.device.action.ACCESSORY_SERVICE_CONNECTION_IND

2.3.0 or above android.accessory.device.action.REGISTER_AFTER_INSTALL

Version Intent Action Name

2.2.2 or below com.samsung.accessory.action.SERVICE_CONNECTION_REQUESTED

2.3.0 or above com.samsung.accessory.action.REGISTER_AGENT

B.1.2. Behavioral Changes

Class Method Application Behavior 2.2.2 2.3.0

or above

Comments

SAAgent

findPeerAgents

Call in onCreate Works as is

Call in separate thread Works as is

Call in onCreate immediately after
application installed

 Refer to B.1.2.1.

requestServiceConnection

From callback thread of
onFindPeerAgentResponse

 Works as is

Call in separate thread Works as is

acceptServiceConnection

From callback thread of
onServiceConnectionRequested

 Works as is

Call in separate thread

 Refer to B.1.2.2.

Do not override to automatically
accept

 Works as is

SASocket

send

secureSend

From callback thread of
onServiceConnectionResponse

 Works as is

From callback thread of onReceive Works as is

Call from one Handler thread to send
to multiple channels

 Works as is

Call from multiple Handler threads to
send in multiple channels

 Works as is

Call from multiple threads to send in
one channel

Refer to B.1.2.3.

close From callback thread of onReceive Works as is

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 110

Call in separate thread Works as is

When large data send in progress Works as is

B.1.2.1. Finding Peer Agents

Application needs to handle error code (ERROR_AGENT_NOT_INITIALIZED) and wait until SAAgent is registered, and
then reattempt to call SAAgent.findPeerAgents().

class HelloAccessoryConsumer extends SAAgent {
 ...
 void onCreate() {
 super.onCreate();
 // Can be called in onCreate, but super must be invoked first
 findPeerAgents();
 }

 void onFindPeerAgentResponse(SAPeerAgent peerAgent, int result) {
 // Cache the peer agent found if result is success
 if (result == PEER_AGENT_FOUND) {
 Cache(peerAgent);
 }
 }

 void onError(SAPeerAgent peerAgent, String errorMessage, int errorCode) {
 // Handle error code to call findPeerAgents API again
 if (errorCode == ERROR_AGENT_NOT_INITIALIZED) {
 findPeerAgents();
 }
 }
 ...
}

B.1.2.2. Accepting Service Connection

SDK 2.2.2 expects application to accept or reject the service connection from the
SAAgent.onServiceConnectionRequested() callback. This restriction is now no longer.

class HelloAccessoryConsumer extends SAAgent {
 ...
 void onServiceConnectionRequested(SAPeerAgent peerAgent) {
 // Can be directly accepted here
 // acceptServiceConnectionRequest(peerAgent);
 // Alternatively, can be accepted in a separate thread
 new WorkerThread() {
 // Do your processing here
 ...
 acceptServiceConnectionRequest(peerAgent);
 }
 }
 ...
}

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#findPeerAgents()
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html#onServiceConnectionRequested(com.samsung.android.sdk.accessory.SAPeerAgent)

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 111

B.1.2.3. Sending data

It is necessary that application uses a single Handler thread to send over a channel. Since write is blocking, this
ensures data is sent one after another. Multiple threads can be used to send over multiple channels.

class HelloAccessoryConsumer extends SAAgent {
 ...
 void onServiceConnectionResponse(SAPeerAgent peerAgent, SASocket socket, int result) {
 // if result is successful, cache socket for using on sending message
 if (result == CONNECTION_SUCCESS) {
 Cache(socket);
 }
 // create new handler threads for each channel
 new WorkerThread(Channel id);
 }

 void sendDataToPeer(String message) {
 // This method can be used to send data from UI thread
 message = composeMessage();
 WorkerThread.obtainMessage(message).sendToTarget();
 }

 class ServiceConnection extends SASocket {
 public void onReceive(int channelId, byte[] data) {
 // Create a new thread do your processing inside
 Create WorkerThread(
 Parse(data);
 ...
 responseMessage = composeMessage();
 WorkerThread.obtainMessage(responseMessage).sendToTarget();
);
 }

 void onServiceConnectionLost(int errorCode) {
 // Reset cached peer agent
 ResetCache();
 }

 void onError(int channelId, String errorString, int error) {
 // Error handling
 }`
 }

 WorkerThread extends Handler{
 void handleMessage(Message msg) {
 message = msg.obj;
 try {
 CachedSocket.Send(channel id, message);
 } catch (Exception e) {
 // Error handling
 }
 }
 }
 ...
}

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 112

B.2. Guide to Use Accessory Message in Legacy Application

B.2.1. Add Intent Action

Application needs to register additional intent action in Androidmanifest.xml as shown below to receive a message.

Intent Action Name

com.samsung.accessory.action.MESSAGE_RECEIVED

<application>

...

<receiver android:name="com.samsung.android.sdk.accessory.MessageReceiver">

<intent-filter>

<action android:name="com.samsung.accessory.action.MESSAGE_RECEIVED" />

</intent-filter>

</receiver>

...

</application>

B.2.2. Create a SAMessage Instance

Application needs to create SAMessage instance in your SAAgent subclass which can be used to call send() API, when
sending a message, and onReceive() callback, when receiving a message.

class MessageProvider extends SAAgent {

...

void onCreate() {

 Create SA;

 try {

 Initialize SA;

 } catch (Exception e) {

 // Error Handling

 }

...

SAMessage mSAMessage = new SAMessage(this) {

 @Override
 protected void onSent(SAPeerAgent peerAgent, int id) {
 // Success to send a message

 }

 @Override
 protected void onError(SAPeerAgent peerAgent, int id, int errorCode) {

// Failure to send a message
}

 @Override
 protected void onReceive(SAPeerAgent peerAgent, byte[] message) {

// Receive a message
}

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#send-com.samsung.android.sdk.accessory.SAPeerAgent-byte:A-
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#onReceive-com.samsung.android.sdk.accessory.SAPeerAgent-byte:A-

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 113

};

...

}

void sendMessage(byte[] message){

mSAMessage.send(peerAgent, message);

}

...

}

B.2.3. Add the supported feature in accessoryservices.xml

To utilize Accessory Message feature in your application, you need to add the additional filed in accessoryservice.xml.
This information will be used so that Samsung Accessory Service Framework knows if your application is supporting
Accessory Message feature or not. It is also guided to update the latest DTD in A.1.4.

<resources>
 <application name="ProviderExample">
 ...
 <supportedTransports>
 <transport type="TRANSPORT_BT"/>
 </supportedTransports>
 <serviceChannel
 id="910"
 dataRate="low"
 priority="high"
 reliability="enable"/>
 <supportedFeatures>
 <feature type="message"/>
 </supportedFeatures>

...
 </application>
</resources>

B.2.4. How to develop one application for supporting both old and new gear(*Optional)

Accessory Message is a new feature supported from Gear S3. If your application needs to use Service Connection
based on SASocket for operating with old gear, you can develop one application to be able to support both old and
new gear.

SA.isFeatureEnabled() will return true if Samsung Accessory Service Framework on own device supports Accessory
Message and SAPeerAgent.isFeatureEnabled() will return true if Samsung Accessory Service Framework and Peer
Agent on the remote device support Accessory Message. You can use SAMessage.send() only when both
SA.isFeatureEnabled() and SAPeerAgent.isFeatureEnabled() return true as below. Otherwise, you should use
SASocket.send() to exchange data.

class MessageProvider extends SAAgent {
 ...

Create SA;

Create SAMessage;

SASocket mYourSubSASocket;

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#isFeatureEnabled-int-
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html#isFeatureEnabled-int-
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAMessage.html#send-com.samsung.android.sdk.accessory.SAPeerAgent-byte:A-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SA.html#isFeatureEnabled-int-
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAPeerAgent.html#isFeatureEnabled-int-
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html#send-int-byte:A-

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 114

SAPeerAgent peerAgent;

...

String message = “Hello Message!”;

if(SA.isFeatureEnabled(SA.SERVICE_MESSAGE) && peerAgent.isFeatureEnabled(SA.SERVICE_MESSAGE) {

// Send a message without Service Connection.

 SAMessage.send(peerAgent, message.getBytes());

} else {

// After establishing Service Connection, send a message using it.
// if you use SAMessage.send(), you will get onError() callback with the proper error code.

 mYourSubSASocket.send(CHANNEL_ID, message.getBytes());

}
 ...
}

B.2.5. Replace with new SAAgent Subclass’s Constructor(*Optional)

If your application does not need to use Service Connection based on SASocket any more, you can remove SASocket
subclass in your application. Then you need to replace with new SAAgent Subclass’s Constructor for which it is not
necessary to use SASocket class. This will prevent any build error in your application.

Constructor for Both Legacy Service Connection and
Accessory Message

Constructor only for Accessory Message

public ConsumerService() {

 super(TAG, SASOCKET_CLASS);

}

public ConsumerService() {

 super(TAG);

}

http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
http://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SASocket.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 115

B.3. Guide to Use startForeground() to upgrade for Android API 26.

B.3.1. New Changes

According to "Google's official guides", there are background execution limits in Android O. The Activity Manager will
kill background services in 5 seconds after being started by the starForegroundService(). So, you have to change the
background service to the foreground service by calling startForeground() with notification. It is only needed when
you upgrade the target SDK of your application to Android API 26. If you build under Android API 26, you don’t need
to add the codes. Check the code example below and you can change those codes to whatever your application
needs.

B.3.2. How to Changes

Note. If you don't need to keep the service in the foreground over 5 seconds, or if you build the project under
Android API 26, you can erase the codes below.

B.3.2.1. onCreate()

/**

* Example codes for Android O OS (startForeground) *

**/

if (Build.VERSION.SDK_INT >= 26) {

 NotificationManager notificationManager = null;

 String channel_id = "sample_channel_01";

 if(notificationManager == null) {

 String channel_name = "Accessory_SDK_Sample";

 notificationManager = (NotificationManager) getSystemService(Context.NOTIFICATION_SERVICE);

 NotificationChannel notiChannel = new NotificationChannel(channel_id, channel_name,

NotificationManager.IMPORTANCE_LOW);

 notificationManager.createNotificationChannel(notiChannel);

 }

 int notifyID = 1;

 Notification notification = new Notification.Builder(this.getBaseContext(),channel_id)

 .setContentTitle(TAG)

 .setContentText("")

 .setChannelId(channel_id)

 .build();

 startForeground(notifyID, notification);

}

B.3.2.2. onDestroy()

/***

 * Example codes for Android O OS (stopForeground) *

 ***/

if (Build.VERSION.SDK_INT >= 26) {

 stopForeground(true);

}

https://developer.android.com/reference/android/content/Context.html#startForegroundService(android.content.Intent)
https://developer.android.com/reference/android/app/Service.html#startForeground(int,%20android.app.Notification)

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 116

B.4. Guide to Upgrade SAAgent for Using Android JobService.

B.4.1. New Changes

In Android API 26 or above, there are background execution limits as mentioned in B.3. If you don’t want to make a
notification to change the background service to the foreground service, you have to change the SAAgent to the new
class named as SAAgentV2. The SAAgentV2uses the same APIs as SAAgent, but is different from the SAAgent because
it doesn’t inherit the Android Service. Instead of SAAgent, the SAJobService (inherits Android JobService) handles the
asynchronous Accessory-related intents. It also calls the Accessory APIs implemented in SAAgentV2. Below is a guide
to upgrade the SAAgent to SAAgentV2.

For more details, please refer to chapter 4 Accessory for JobService.

B.4.2. How to Changes

B.4.2.1. Update library to Accessory SDK v2.6.1

Update the current library to the latest version of the Accessory SDK.

B.4.2.2. Modify Android Manifest

Erase the service of SAAgent in Android manifest and add the following services: SAJobService and SAService.
SAJobService is for devices of Android O OS or above, and SAService is for devices below Android O OS.

<application>

...
 <service android:name="com.samsung.android.sdk.accessory.SAJobService"
 android:permission="android.permission.BIND_JOB_SERVICE"/>

 <service android:name="com.samsung.android.sdk.accessory.SAService" />
 ...

</application>

B.4.2.3. Change SAAgent to SAAgentV2

- Inherit SAAgentV2 instead of SAAgent.

class HelloAccessoryConsumer extends SAAgentV2 {

...

}

https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgent.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 117

- Make constructor with Android context.

class HelloAccessoryConsumer extends SAAgentV2 {

...

 public HelloAccessoryConsumer(Context context) {

 super(AGENT_NAME, context, SOCKET_CLASS);

 try {

 Initialize SA;

 } catch (Exception e) {

 // Exception handling

 }

...

}

- Erase the methods for Android service’s life cycle such as “onCreate()”, “onStart()”, or “onDestroy()”

- Erase the codes for binding services.

- Update the deprecated APIs to the new APIs as listed below.

 SAAgentV2.onFindPeerAgentsResponse(SAPeerAgent[], int)

 SAAgentV2.onServiceConnectionResponse(SAPeerAgent, SASocket, int)

 SAAgentV2.onPeerAgentsUpdated(SAPeerAgent[], int)

 SAAgentV2.onError(SAPeerAgent, String, int)

B.4.2.4. Change the way of instantiating SAAgentV2 instead of binding service.

- Request the instance of SAAgentV2.

private HelloAccessoryConsumer mConsumer = null;
private SAAgentV2.RequestAgentCallback mAgentCallback = new SAAgentV2.RequestAgentCallback() {
 @Override
 public void onAgentAvailable(SAAgentV2 agent) {
 mConsumer = (HelloAccessoryConsumer)agent;
 }

 @Override
 public void onError(int errorCode, String message) {
 Log.e(TAG, "Agent initialization error: " + errorCode + ". ErrorMsg: " + message);
 switch(errorCode) {

case ERROR_CLASS_NOT_FOUND :
 // Requested Agent class is not found.
 // Verify the class name passed in requestAgent().

break;
case ERROR_CONSTRUCTOR_NOT_FOUND :

// Requested Agent class constructor is not found.
// Verify the agent class which name is passed in requestAgent() has a constructor with
Context argument.
break;

case ERROR_ CONSTRUCTOR _EXCEPTION :

https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#onFindPeerAgentsResponse-com.samsung.android.sdk.accessory.SAPeerAgent:A-int-
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#onServiceConnectionResponse-com.samsung.android.sdk.accessory.SAPeerAgent-com.samsung.android.sdk.accessory.SASocket-int-
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#onPeerAgentsUpdated-com.samsung.android.sdk.accessory.SAPeerAgent:A-int-
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html#onError-com.samsung.android.sdk.accessory.SAPeerAgent-java.lang.String-int-
https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 118

// Requested Agent class constructor threw an exception.
// Check the constructor code of the class which name passed in requestAgent().
break;

case ERROR_REQUEST_IN_PROGRESS :
// Requested Agent Class is already called or being released.
// Call requestAgent() after sometime.
break;

 }
 }
};
...
@Override
protected void onCreate(Bundle savedInstanceState) {
 ...

SAAgentV2.requestAgent(getApplicationContext(),
HelloAccessoryConsumer.class.getName(), mAgentCallback);

 ...
}

- Release the instance of SAAgentV2.

@Override
protected void onDestroy() {

...
//Perform local cleanup
//call releaseAgent()
if(mConsumer != null)

mConsumer.releaseAgent();
...

}

https://img-developer.samsung.com/onlinedocs/sms/accessory/com/samsung/android/sdk/accessory/SAAgentV2.html

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 119

Appendix C. Using Emulator
It’s helpful to remember the following tips on using Emulator:

- “Emulator for Samsung Accessory” application does not give any response form “Disconnected”.

 Please check the following items.
A. Are you sure to reboot after all installation has been finished?

B. Is USB connected to the Smart device?

C. Is Wi-Fi or mobile network available on the Smart device?

D. Did you execute the command, “adb –d forward tcp:8230 tcp:8230”?

E. Is GEAR IDE activated?

F. Did you execute the command, “killall sapd”?

G. If after doing steps A to F does not make the application work, you need to use Application Manager
to clear the data of Samsung Accessory Service. And repeat the steps from A.

- Connection between Consumer and Provider application is not successful.

 Please check the following items.

A. Does Emulator for Samsung Accessory application show “Disconnected”? If not, check the above tip.

B. Did you add TRANSPORT_WIFI to accessoyservices.xml?

<resources>
 <application ...
 <serviceProfile
 ...
 <supportedTransports>
 <transport type="TRANSPORT_WIFI" />
 ...
 </supportedTransports>
 ...
 </serviceProfile>
 </application>
</resources>

C. If the application is still not working, please refer to “3. Accessory” once again.

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 120

Appendix D. Creating Gear Author Certificate Using
Android Keystore

Author certificates helps in maintaining secure peer authentication between the Tizen Gear App and the Android
mobile app. The Certificate Extension SDK support creation of Tizen author certificate based on Android keystore file.
For instructions on installing this SDK, please refer to the link: Tizen Extension SDK Guide.

This section will only explain about creating author certificate using Android keystore. For a full guide on Samsung
Tizen certificates creation using this SDK, please refer to the link: Getting the Certificates.

D.1. Steps

1. After creating your own Certificate Profile, you will create author certificate from Step 2.

http://developer.samsung.com/gear/develop/tech-doc/tizen-extension-sdk-guide
http://developer.samsung.com/gear/develop/getting-certificates

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 121

2. Select Create a new certificate profile to create new one. With Advanced options menu, you can check Use an
existing author certificate option to select the Android keystore. Browse and select your Android keystore file,
input correct password and click Next.

3. At the Next step, a Samsung Account sign-in will be opened.

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 122

4. After a few seconds, author certificate will be generated. The Next step is creating distributor certificate.

Accessory Programming Guide

Copyright © Samsung Electronics, Co., Ltd. All rights reserved. Page | 123

5. Click Next, after a few seconds you can get the distributor certificate. Then, click Finish.

